Proposal for an Efficient Single Object Allocator

Dhruv Matani

April 25, 2013

Contents

1 Motivation

2 Current state-of-the-practice

3 The Static Segment Tree
3.1 Locating free objects oL

3.2 Locating a free object close to a given allocated object

4 The Big Picture

5 Optimizations

6 Debugging Aids

7 Profiling Aids

1 Motivation

With increasing memory sizes, and increasing difference between the size of
CPU caches and main memory, improving locality and reducing the per-object

allocation overhead seems to be a desirable thing.

The C++ memory allocation model allows allocators to take advantage of the
fact that the type (and hence the size) of the object being allocated (and deal-
located) is known told to the memory allocator run-time by the language itself.

Many allocators fail to take advantage of this subtle fact.

Containers such as list, map, set, etc... are used very often, and result

in problems such as:

1. Memory fragmentation since nodes are not necessarily freed in the same
order as they are allocated. If an allocator uses free lists to string together
objects of the same size, then objects lying on different cache lines and

pages tend to get grouped together.

2. High per-object overhead. A linked list node for list<double> on a 64-
bit system occupies 8 x3 = 24 bytes. If the allocator overhead is 8 bytes per
object, then we are looking at a 33% overhead, which is pretty high. Some
allocators try to alleviate this problem by allocating small objects in arenas
or pages and rounding off the address of the deallocated memory to the
arena or page boundary to determine the metadata related to the memory
being deallocated. These allocators have a constant overhead, which is not
proportional to the number of objects allocated. However, they suffer from

memory fragmentation® since free blocks are usually strung as a linked list.

C++ allocators accept an optional hint parameter, which is usually ignored by

most allocators. If the hint parameter is set by containers such as list, map, set,

1By memory fragmentation, I mean the behaviour of the allocator to return memory from
different pages even though free memory on the same page is available. Usually, free-list based

allocators tend to return memory in the order it was deallocated.

etc. .., then it could potentially increase the cache usage of the processor if the

allocator allocates objects near the object at the location of the hint parameter.

2 Current state-of-the-practice

Note: I have borrowed the term state-of-the-practice from Dr. Michael Ben-

der’s presentation on Tokutek

The current bitmap_allocator is attractive because:

1. The per-object overhead is just 1-bit

2. The allocator metadata and the user memory are at separate locations, so
updating the allocator metadata never touches memory close to the user
memory. Since the bitmaps are very tightly packed together, it means
that the allocator’s working set is very hot and will hopefully reside in the

processor cache.

The current bitmap_allocator achieves the objectives mentioned above except

for the following drawbacks:

1. The bound on the worst-case cost of a single allocation request is O(n).
However, on the average, the running time is o(logn) (yes, that’s a little-
Oh) since the average case is assumed to be a sequence of allocation re-

quests or that there are enough free objects available.

2. The free-list-bitmap comes just before the actual memory, so faulty pro-

grams run the risk of corrupting the allocator metadata.

3. The code seems to be unnecessarily complicated and doesn’t have a stan-
dard data structure backing it when in fact a Segment Tree is the perfect
data structure for such a use-case. The Segment Tree also provides an
upper-bound of @¥(logn) on the worst-case running time of a single call to

the allocate () function.

3 The Static Segment Tree

The Static Segment Tree? is a data structure commonly used in a geometric
setting to do range queries. 1t is efficient at performing range aggregation queries

over a static data set. Fortunately, that is all we need it for.

The Segment Tree is a summary data structure that stores data in a heap-like
tree-ordered fashion, with the root node holding the summary information for
the complete data set, the left & right children of the root node holding the
summary information for the left & right half of the data set, and so on till you
reach the leaf nodes, which hold information for just a single data item. It is
easy to see that the space requirements for storing n elements is 2n, which is

an O(n) space requirement to store n elements.

For the purposes of the bitmap_allocator, we shall use a segment tree of bits,
which means that we shall use 2n bits to summarize n objects (or memory
regions) each of which correspond to a single object returned by the allocate()

function.

3.1 Locating free objects

A set bit (1) at an internal node indicates that there exists a free object some-
where below this node, whereas a reset bit (0) indicates that there is no free
object below this node. This allows us to quickly determine whether we should

go down this node in search of a free node or not.

3.2 Locating a free object close to a given allocated object

To respect the hint parameter that might be passed by the caller in the allocate ()
function, we locate the leaf-node that the allocated hint pointer points to and

try to work our way up the tree from there, stopping at a node that has a set

2https://en.wikipedia.org/wiki/Segment_tree

(1) bit and working our way down from that node using the same algorithm as

before.

An idea that is slightly wasteful of space has been shown here diagrammatically:

http://bit.ly/dS21rh

4 The Big Picture

Similar to the older bitmap_allocator, we use a structure that is composed
of exponentially increasing sized Segment Trees. The structure is composed
of Segment Trees that have sizes 16, 32, 64, 128, 256, etc... as the memory

allocation requests increase.

A pointer to each such Segment Tree is stored in an array sorted by the start
address of the memory region that each Segment Tree points to. In the worst
case, we will have O(logn) Segment Trees, so doing a linear search on them
to find a Segment Tree that has a free object is acceptable. This linear search
is followed by a lookup into the Segment Tree to actually find that object and

mark it as allocated.

The same strategy is used to locate the Segment Tree to which an object to be
deallocated belongs. i.e. We just traverse the array of Segment Trees and check

if the pointer being deallocated lies in the active range of the Segment Tree.

5 Optimizations

The older bitmap_allocator was parameterized by type, and that meant that a
separate memory pool was used for bitmap_allocator<int> & bitmap_allocator<float>.
Instead, we can use one more level of indirection and create an implementation
bitmap-allocator_impl<SIZE> that is parameterized on the size of the object
rather than the type of the object. This allows multiple objects having a differ-

ent type, but the same size to share the underlying memory pools.

Note: This optimization is currently NOT implemented since objects of dif-
ferent types tend to have different lifetimes that are related mostly to the type
of the object rather than the size of the object. Additionally, we expect there to
be locality of reference as far as different objects of the same type rather than

size are concerned.

We need not incur a cost of O(logn) per allocate/deallocate request. This
is because we can walk the tree from the place we last left off. For example,
if we start off with an initially empty tree, we will go down logn nodes till we
reach a leaf node, after which we go up just 1 step and cache the location of
this node. The next time we need to allocate a node, we will just visit the right
child of this node and walk up 2 steps to the grand-parent of the allocated node.
This results in an algorithm that has a worst-case cost/operation of O(logn),
but the amortized cost/operation is O(1) if we ignore degenerate cases. In
expectation though, this algorithm incurs a cost of O(1) per operation (i.e.

allocate/deallocate).

The degenerate case arises when we allocate the last free block in a segment
tree and immediately deallocate it, and repeat this over and over again. This
causes the algorithm to repeatedly reset and set O(logn) bits from the root to

the affected leaf node.

We notice that we need not update the cache location of our node in case of a
deallocate operation since a deallocate operation only frees nodes up, which
is okay as far as our optimization is concerned. The cached node location is

updated only when we allocate nodes.

Another optimization we use is that we cache the most recent Segment Tree from
which an allocation/deallocation request succeeded in the hope that subsequent
requests for the same will be satisfied by the same Segment Tree. This may not

always be true, but works well for many practical workloads.

All these optimizations greatly reduce the constants and asymptotic complexity

of each operation, and improve the performance of the allocator.

6 Debugging Aids

The older bitmap_allocator was pretty easy to corrupt (as so will the new one)
since the bitmaps used to locate free objects lies just before the user memory.

There were no checks performed to verify the sanity and integrity of the bitmaps.

The new allocator should have some sort or magic words on the boundaries of
not just the bitmap, but also the boundaries of the memory region that stores
user memory. Additionally, a debug mode could enable a more computationally

intensive parity checksum on the bitmap.

7 Profiling Aids

In Profile Mode, the bitmap_allocator should be able to provide some infor-
mation about the locality of the memory access patterns. As a first attempt, it
could (in each Segment Tree) compute the quotient:

of allocated objects
Total # of objects between the first and the last allocated object

and determine the tightness of the active set. The higher this ratio (closer to

1), the better the performance of the application.

