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Abstract

We present a way to compress the complete human genome against

a reference genome to achieve 139x - 895x compression. Our approach

can potentially compress BUILD 36.3 of the human reference genome

against (about 2.6GiB) BUILD 36.1 (also known as hg18 ) to achieve

a compression ratio of 139x (about 19.2MiB). The Korean genome

KOREF 20090224 (about 2.9GiB) can be compressed against KO-

REF 20090131 to achieve a compression ratio of 895x, resulting in a

file of size about 3.3MiB1.

The compressed differences are stored such that decompression

from random offsets is fast. Furthermore, our range format for storing

differences allows us to efficiently compute transitive differences be-

tween the target genome and different reference genomes. Our method

does not rely on the target genome being almost of the same size as

1These results are extrapolated from tests we ran on a subset of chromosomes for each

genome pair
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the reference genome, or the existence of any alignment program avail-

able to us. We shall also prove that for the representation used, the

technique we propose achieves optimal compression.

We shall first motivate the problem itself, show existing research

that has been done in this direction, present our approach, and com-

pare it with prior work.
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1 Motivation

The Complete Human Genome was sequenced in 2003. Since then a lot of

research is being done in genomics and computational biology. The major

input for most of the computation is the 2.9 billion base pairs [2][3] of the

human genome which correspond to a maximum of about 725 megabytes of

human genome data.[4]

Furthermore, reduction in the cost of sequencing (via the “next-gen” se-

quencing platforms) has given birth to the 1000 genomes project 2 which

aims to sequence the genomes of a large number of people. Just like the

other human genome reference projects, this data (estimated 8.2 billion

bases per day) would be made available via public databases for the sci-

entific community.[5]

As we can now see, we are dealing with megabytes and megabytes of data

when we work with genomes! This gives rise to challenging problems with

respect to storage, distribution (downloading, copying), and sharing of this

genomic data. Hence we need to consider better compression techniques for

the genomic data. That apart, when working with genomic data, we want

to be able to optimize decompression so that working with these compressed

genomes is no harder than working with the uncompressed genome.

The goal of the 1000 genomes project is to find most genetic variants that

have frequencies of at least 1% in the populations studied. Similarly, once

the $1000 genome project[10] becomes successful, storage costs for all the

sequenced genomes will need to be kept under control. To be able to do

this, we need an space (and time) efficient way of compressing the sequenced

genomes so that the DNA of more people can be sequenced for a reasonable

price.

Multiple laboratories might use different reference genomes to compress the

genomes they sequence. For example, a Korean lab might want to use a

Korean genome as reference since it will be closer to the genome of other

2http://www.1000genomes.org/

4

http://www.1000genomes.org/


Koreans. Other laboratories might have their own reference genomes. How-

ever, if labs want to share sequenced genomes, it becomes hard to share the

difference compressed genome if the differences have been computed with

respect to different reference genomes. One option is to decompress the

sequenced genome and re-compress it using the target reference as the refer-

ence genome. However, since the compression is a time consuming process,

we would like to be able to quickly re-encode the genome with reference to

a different reference genome.

We explore the problem of genome compression and see if we can:

• Better align 2 human genomes so as to facilitate better compression

on them

• Better compress the human genome to a smaller on-disk representation

• Enable faster decompression

• Enable space-efficient decompression

• Enable I/O efficient decompression so that working with the com-

pressed genome is the norm rather than the exception

• Support efficient transitive compression of a genome with respect to

multiple reference genomes

2 Existing Research

2.1 gzip & bzip2

These 2 applications are general loss-less compression routines that use run-

length encoding and block sort compression respectively. They can compress

the human genome (about 3GiB) to about 830MiB, which is a compression

ratio of 3.67.
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2.2 GenCompress, BioCompress & Cfact

GenCompress[7], BioCompress[8] & Cfact[9] are tools that mostly rely on

either Huffman Coding, Ziv-Lempel[6], or Arithmetic Coding to compress

the human genome. They are able achieve better compression when com-

pared with gzip & bzip2, but not as much as some of the difference encoding

methods mentioned below. These methods achieve compression ratios of

anywhere from 4.82 – 7.00.

2.3 Difference Encoding Techniques

Difference encoding schemes are getting very popular since they can achieve

very high compression ratios of greater than 100 since 99.9% of the genomes

of 2 humans are similar to each other. There are very few variations between

the genomes of 2 individuals.

DNAzip[1][16] was the first algorithm to compress the target genome by stor-

ing differences between the target and reference genome. However, DNAzip

does not solve the problem of aligning 2 genomes with each other, but in-

stead assumes the existence of an SNP – Single Nucleotide Polymorphism

file, which it takes in as input. In our experience, aligning 2 genomes is a very

time consuming process and is orders of magnitude slower than performing

the actual compression itself.

Wang & Zhang[11] have come up with a difference compression technique

that is able to compress 2986MiB of a Korean genome to 18.8MiB. This was

done by difference compressing the target genome against another Korean

genome which was sequenced using similar methods and had the about the

same size. their technique considers blocks of bases of size 50, 20 or 10

million, and groups each chromosome from both the target and the reference

in these blocks to compute the difference between them. This may not

always work with genomes that have sequenced and assembled using different

techniques, or if you are using the human genome as a reference to compress

the mouse genome for example.
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Researchers at Virginia Tech, Blacksburg[12] have also come up with a dif-

ference compression algorithm that focuses on decompression speed rather

than raw compression ratio. We are also motivated by some of the same fac-

tors that have motivated their research. The technique presented achieves

decompression times of O(log n) per random offset query3. We also tar-

get a similar complexity for random offset queries. They haven’t pub-

lish exact numbers on compressing the human genome, but claim that

they achieve 98.8% compression when compressing mitochondrial sequences,

which roughly compresses the human genome of 3GiB to 36MiB. Their tech-

nique also relies on align sequences of chromosomes in the target with those

in the reference genome. They use the multiple sequence alignment appli-

cation MUSCLE[13] to align the sequences with the reference genome.

Researchers at Cairo University, Egypt[14] use existing local-sequence-alignment

programs to align the target and reference sequence with each other. They

then record insertions, deletions and modifications with respect to the refer-

ence sequence and encode these differences in a compact fashion. They have

achieved 99.4% compression on the human genome, which means that they

can compress 3GiB of genomic sequence data to about 18.5MiB. However,

they don’t talk much about decompression, and it seems as if it is not en-

tirely easy to decompress to random offsets in the target genome. i.e. Ask

for a sequence of length l at offset k from the uncompressed genome.

3 Our Solution

3.1 Outline of the Approach

We compress the genome a chromosome at a time. Refi is our reference

chromosome and V ictimi is the chromosome to be compressed.

We shall find the optimal (least) number of ranges from Refi that can com-

3We haven’t yet done a High Probability analysis on the number of disk blocks scanned

to resolve a range of a certain length k

7



pletely cover V ictimi. To do this, we shall construct a Suffix Array on

Refi & V ictimi and then find the least range covering. We shall prove that

for an encoding that only encodes (offset, length) pairs from the reference,

this representation is optimal in terms of the number of ranges needed to

completely cover the entire target chromosome.

Subsequently, the plain-text file containing these optimal number of ranges is

encoded in a binary format and the resulting binary file is further compressed

using gzip to produce the final compressed difference file.

Hence, it is easy to see that our approach will provide good compression

as long as there is a sufficient amount of overlap between the target and

reference genomes even if:

• The 2 genomes have different lengths.

• The genomes have been sequenced and assembled using different ap-

paratus and methods.

• You try to compress the mouse genome with a human genome as a

reference.
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Figure 1: The flow of Genome Compression
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3.2 The Algorithm

1. For each corresponding chromosome pair Ref i & V ictimii ∈ [1 . . . 23],

build a suffix array4 from the string Refi#V ictimi$.

2. For every suffix in V ictimi, find the length of the longest prefix that

matches with some string at index j in Ref i.

3. Now that we have all the ranges in Refi that V ictimi can be cov-

ered by, we find the least number of ranges that can completely cover

V ictimi. This can be done in O(n log n)5 time using Dynamic Pro-

gramming and Segment Trees as an online Range Minimum Query

data structure. The problem of finding the minimal number of com-

pletely covering sub-ranges exhibits optimal substructure. i.e. A solu-

tion for the range [i . . . n] can be constructed using the solution to the

ranges [i+ 1 . . . n], [i+ 2 . . . n], [i+ 3 . . . n], . . . , [i+ k− 1 . . . n], where k

is the length of the range starting at index i.

3.3 Transitive Difference Computation

Suppose V is the victim genome that is already compressed with reference

to the reference genome R1, and we want to compress it with respect to

reference genome R2, then we need to compute how genome R1 compress

with respect to genome R2. Since we expect to compress many victims with

respect to a fixed number of variable references, we can ignore the cost of

computing this difference. Besides, this is just a one time process and once

the delta R1 −R2 has been computed, we can reuse it indefinitely.

To be able to compute transitive differences, we need to slightly modify

the output of the compression routine. Instead of storing just the tuple

4This is done using Manber & Myers O(n logn) suffix array construction algorithm[15],

which allows us to compute the Longest common Prefix of 2 adjacent suffixes in O(logn)

time
5There is also a (single-pass) O(n) time algorithm to do the same, but we don’t talk

about it here
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Figure 2: Transitive Difference Computation

(offset, length), we store the tuple (offset, length, span), where span is the

actual span of the range (length of maximum match) between the victim

and reference. This span is the value computed using the suffix array and

longest common prefix algorithm.

Now, given the files V −R1 and R1 −R2, we need to find, for every offset i

in V, in index j in R1 where it can be found. Once we know the value of j,

we lookup R1 − R2 to locate the index k in R2 of the index j in R1. This

lookup need not be done on a per index basis, but can instead be done on

a range basis. This is an optimization that reduces the running time of this

algorithm.

Each lookup into the difference file R1 −R2 costs O(log n), (where n is the

number of lines in R1−R2) and we need to process O(m) such ranges (since

ranges may get split during this operation). Here, m is the total number

of lines in the file V − R1. Hence, the total running time of the transitive

difference computation routine is O(m log n).

We must mention however that the differences computed using the transitive

difference routine are not optimal.
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3.4 Proof of Optimality

We shall prove by contradiction that for the range based encoding scheme

we have used, the algorithm presented above achieves optimal compression

in terms of the number of ranges used to represent the completely covered

victim chromosome.

Given the following range lengths starting at the indexes at which they

occur, what is the least number of ranges that completely cover the whole

range?

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Range Length 3 2 4 1 1 1 3 6 8 2 1 2 1 1

Figure-3: Indexes and lengths of ranges at those indexes

The best solution extends the smallest range that it can cover to its right.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Range Length 3 2 4 1 1 1 3 6 8 2 1 2 1 1

Min n(Ranges) 2 1 3 3 2 2 1

Figure-4: If we have the solution till index 7, and we want to extend it to compute the

solution till index 6, then we scan up to 3 (the length of the longest range at index 6)

places to the right of index 6 (shown in red), locate the minimum value in that range

(shown in bold face), and add 1 to it.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Range Length 3 2 4 1 1 1 3 6 8 2 1 2 1 1

Min n(Ranges) 4 4 3 5 4 3 2 2 1 3 3 2 2 1

Next Index 3 2 6 4 5 6 8 8 14 10 11 13 13 14

Figure-5: The numbers in red indicate the range end-points that make up the ranges

that cover the entire sequence. If n numbers make up the range, then there exist (n-1)

ranges. Range extension stops when we have gone past the last index in the sequence

(14 in this example).
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If there is a better solution at any stage, then it would have been the one

chosen by our algorithm for extending a range from a given index.

3.5 Binary Encoding

We use a tight binary format to represent the (offset, length) pairs into the

reference that are needed to represent the target genome.

Each line in the intermediate plain-text range file holds an (offset, length)

pair that needs to be encoded. Since offsets can be quite large, we always

encode them as fixed 32-bit integers. The length values however have a

different distribution. For a chromosome we compressed, here is the distri-

bution of length values.

Range of Values [1. . . 127] [128. . . 16383] [16384. . . ]

Counts 56620502 60686338 2602

Percentages 48.27% 51.73% 0.0022%

Figure-6: Distribution of length values in the compressed ranges file.

All values in the range [1. . . 127] are encoded as a single byte integer with

the MSB set to 1. Values in the range [128. . . 16383] are encoded as 2-byte

integers, with the first 2 most significant bits set to 01. Values greater than

16383 are encoded as 4-byte integers with the first 2 most significant bits

set to 00. This allows us to uniquely identify the size of the value based just

on the value of the 2 most significant bits of the integer.

3.6 Decompression

The difference encoded file looks like this:

61771 51

7829 89
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17288 12

7288 6523

These are ranges with lengths 51, 89, 12, & 6523. We construct an interme-

diate file containing the cumulative lengths to allow quick random retrieval.

The pre-processed data looks like this:

61771 0

7829 51

17288 140

7288 152

-- 6675

Now, to get the decompressed chromosome data of length 100 at offset 130,

we need to just do a Binary Search into the cumulative length array and

find the location of offset 130. This happens to be at offset 7829+79 in the

reference file. The range of length 200 happens to span 3 ranges, one is

the previous range, and the other ones are at offset 17288 with length 12

and offset 7288 with length 109. Since all the blocks in the reference come

from the same chromosome, we can prevent disk seeks by loading the whole

chromosome into memory before starting decompression (or alternatively

incur a cost of a few disk seeks per retrieval). If we consider the case where

we have many genomes compressed with respect to a fixed reference genome,

then it is sufficient to just keep that genome, and all the difference files in

memory to ensure fast random & sequential decompression.

3.7 Practical Considerations

Every chromosome of the target genome was stripped off any N characters

(unknown base-pair) before compressing it against the reference genome’s

corresponding chromosome. These unknown base-pairs mostly occur at the

beginning and end of each chromosome.
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We ran the experiments on a 32-bit VMWare Player Virtual Machine run-

ning Ubuntu 11.04, with Windows 7 as the Host Operating System. Since

the guest is a 32-bit system, the process address space is limited to 4GiB,

out of which about 1.5GiB of the higher address space is used up by the

kernel and dynamically loaded libraries such as glibc, etc. . . . This leaves us

with 2.5GiB to use. When constructing the Suffix Array, we have observed

that there are rarely sub-strings greater than 65,536 in length that overlap

in 2 genomes. This means that we can cap the extra space required by the

suffix array construction algorithm to 16n× sizeof(int). An additional 3n

space overhead is incurred to store the input string and a 5n× sizeof(int)

overhead is incurred while computing the optimal overlap of ranges.

All this adds up to (in bytes):

16n× sizeof(int) + 3n + 5n× sizeof(int)

= 16n× 4 + 3n + 5n× 4

= 64n + 3n + 20n

= 87n

Hence, the space requirement for our algorithm is O(n), with a fairly high

constant overhead.

Equating the 2 sides, we get:

2.5× 10243 = 87n

Solving for n, we get:

n = 30854650

which translates to about 30 million.

Hence, we can process only strings of length 30 million at a time with the

process address space that we have.

Experimentally, we determined that we got the best results if we chose

16MiB of data from the reference chromosome & 6MiB of data from the

target chromosome (totaling 22MiB in all). We had to rune some more

experiments to find out the best way to align these blocks so that maximum

compression for the target could be achieved. We found that we occasionally
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need to align each block of 6MiB with potentially 2–3 blocks of size 16MiB

from the reference to get the best compression. Generally uncompressed

plain-text difference files for 6MiB from the target range anywhere from

90KiB to 300KiB . If we see results in this range, we don’t try other ranges.

This block based processing of the chromosomes results in sub-optimal com-

pression, but:

• Allows us to work around process address space limits even though

the machine might have enough physical memory.

• Results in faster decompression since the hard disk needle need not

seek too far (the 16MiB block from which the differences are gener-

ated is all that is needed to decompress a 6MiB block). This makes

decompression a very I/O-efficient process.

Compressing a full target chromosome against another full reference chro-

mosome will result in better compression, but will require more memory

during decompression (or will result in more disk seeks if available memory

during decompression is bounded).

You can see that by varying these block sizes, one can achieve a balance

between compression ratio and decompression speed/memory required to

compress & decompress a chromosome.

4 Approaches Compared

4.1 DNAzip

The DNAzip group relies on an existing SNP file being present, and hence

they don’t do sequence alignment before compressing the difference file.

It isn’t possible to trivially get the decompressed genome data at a certain

(offset, length) pair without decompressing the complete genome.
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4.2 Wang & Zhang’s method

Wang & Zhang’s method is called The GRS tool and it works in blocks of size

50, 25, or 10 million. It relies on being able to compute the longest common

sequence between 2 blocks. It isn’t immediately apparent how easy it would

be to support fast & efficient random offset querying on the compressed data

generated by The GRS tool.

4.3 Virginia Tech Research

The approach that the Researchers at Virginia Tech, Blacksburg[12] use is

one of using existing sequence alignment programs such as MUSCLE[13] to

do the heavy lifting of aligning sequences with each other and then encode

the differences using one of the following 5 operators:

1. insertion

2. deletion

3. replacement

4. insertion after replacement, and

5. deletion after replacement

These difference operations are then tightly compressed using Huffman Com-

pression to produce the final output.

The highlight of their approach is that they support very fast random offset

decompression.

17



4.4 Tabulated Comparison

Method Does Se-

quence

Alignment

Works

on

FASTA

Human

Genome

Compressed

to

Comp.

Ratio

Fast

Decom-

pression

Random Off-

set Querying

DNAzip No No 4.1MiB 724 Yes No

GRS Yes Yes 18.8MiB 159 Yes Not clear

VTech Yes Yes 36MiB 85 Yes Yes O(log n)

Cairo Yes Yes 18.5MiB 166 Yes No

Proposed Yes Yes 22-3.3MiB 139-895 Yes Yes O(log n)

Figure-7: A comparison of various approaches

5 Experimental Results

When run on hg18 as the reference genome and BUILD 36.3 of the human

genome reference as the target genome, here are the results we got for some

chromosomes.

Chromosome Original (MiB) Compressed (KiB) Compression Ratio

14 83 554 153.4

15 73 562 133.0

20 57 387 150.8

21 32 219 149.6

22 32 243 134.8

Figure-8: Compression of certain human chromosomes.

When run on KOREF 20090131 as the reference genome and KOREF 20090224

as the target genome, here are the results we got for some chromosomes.
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Chromosome Compressed

(KiB)

Compression

Ratio

GRS Com-

pressed (KiB)

GRS Compres-

sion Ratio

16 97 918.43 554.7 158.9

17 86 893.02 494.1 158.3

18 73 1009.97 399.0 189.4

22 48 682.67 256.3 192.6

Figure-9: Comparison of compression achieved by our method v/s that achieved by the

GRS Tool on certain chromosomes sequenced from Korean individuals. Chromosome 16

was NOT stripped off the N characters to show that removing these characters doesn’t

impact the compression ratio.

6 Future Work

Compressing the genome 6MiB at a time against 16MiB of data from the

reference takes about 15.5 minutes on a single core (CPU).

This computation can be parallelized across multiple cores. If the compres-

sion is being done a chromosome-at-a-time, then each chromosome can be

processed on a separate CPU so that the total time required is the maximum

of the time required to compress each chromosome rather than the sum of

their times.
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