A technique for extracting song lyrics from web
pages without knowing their structure

Dhruv Matani

October 20, 2006

Abstract

A search result for many song lyrics on popular search engines returns
many mostly relevant results. However, the target pages are filled with
ads, videos and images. Anyone searching for the lyric text would not be
interested in all that paraphernalia. liblyric is an attempt to automate the
process of scanning these individual result pages and extract the common
textual content from them in the hope that the common parts will defi-
nitely be just the song’s lyric text. The techniques that liblyric employs
have turned out to give accurate results more than 90% of the time.



1 Introduction

There are many web sites that source and display song lyrics on web-pages for
end users. These pages usually are bloated with advertizements, videos and
other images. As an end user, it is more desirable to have the display of song
lyrics integrated with your music player. Music players generally fetch song
lyrics by parsing the content of web-pages of one or two well known sites for
which they have built parsers and scrapers. However, these scrapers become
useless since web-sites readily change their page structure and

e The music player writers may not be able to keep up with the rate of these
changes

e It may not always be possible to push out updates to the music player at
the same frequency at which the page structures change

e It may not always be possible to update any part of the already installed
music player due to various reasons such as the user having suppressed
it, etc... This drawback can be addressed by always making a lyric-fetch
call to a local service which may be updated at any time. This however
may lead to this service being abused by other music players.

A page-structure independent technique for fetching the song lyrics is needed
if these shortcoming are to be addressed. We present one such technique that
will almost always find the lyrics of a song if the text exists in more than two
places on the web.

In the first stage, a search engine is used to fetch potential sources of in-
formation. These information sources are cleansed (stripped of everything but
textual content) and a document similarity algorithm is applied to each pair of
candidate sources. The document similarity algorithm not only quantitatively
determines the similarity between the two documents but also returns the ex-
act text from both documents that it deems to be the largest (approximately)
intersecting block of text.

2 Data Sources & Cleansing

Any search engine such as Google! or Dogpile? or Yahoo!? may be used to fetch
the initial set* of documents.

These candidate documents are HTML files that are stripped of everything
except for the actual textual content. This can be done using any tool® that
strips the document of HTML tags and preserves the textual content of the

pages.

Thttp:/ /www.google.com/
2http://www.dogpile.com/
Shttp://www.yahoo.com/

4Currently, liblyric fetches about 8-10 documents
5Currently, liblyric uses unhtml for doing this



3 Document Similarity

The document similarity algorithm that is used to extract similar blocks of text
needs to be fuzzy since different sources may have slightly mutated versions of
the same song lyrics. This happens because:

e Different lyric contributors may use punctuations differently and spell cer-
tain words differently (for example, color and colour). This can be mit-
igated to a certain extent by ignoring punctuations and trying to stem
words. This is language dependent and will work only for a specific set of
languages for which stemming has been implemented.

e Contributors may get lazy and instead of copying a line that appears
consecutively four times, they might just add (Four times) after the first
time it occurs.

e Some contributors may add text such as (solo) and (chorus) and specify
the singer more accurately than others.

e Some providers insert textual advertizements between two lyric verses.

e Some providers include links and text for downloading ringtones that have
the same tune as the song whose lyrics are being displayed.

Even with all these problems, some of these documents are equally accurate
and it would be reasonable to show any of them (without the advertizements)
to the end user.

The fuzzy document similarity algorithm that is used to find lyric text in
web pages has these characteristics to let it work even in the face of noise in the
content as mentioned above:

e It should be permissive enough to detect a match even if a certain con-
tiguous blocks of text differ at a few places.

e It should not be so permissive as to wrongly detect uncommon blocks of
text as common blocks of text.

e There should be a limit on how many mismatched sub-blocks of text (of
a certain size) are allowed in a block of text that is deemed to be similar
to another block of text in another document.

The fuzzy document similarity algorithm that is used in liblyric takes into
account all the above requirements and returns the largest blocks of text from
both documents that are deemed to be similar. The ranking algorithm (ex-
plained below) uses all these matched blocks and tries to rank the best match
and produce a final result.



3.1 The Algorithm for fuzzy similarity

A fuzzy match between two documents is achieved by trying to match blocks of
text and returning the largest block of text that is fuzzily common to both the
documents.

For doing so, we maintain a candidate list of blocks for one of the documents.
A candidate block is a block of text represented by the tuple (documentID, start
offset, end offset) meaning that this is a block of text starting at offset start
offset and ending at end offset in the document documentID.

If some candidate block in the 15 document can not be extended by any text
in the 2"¢ document, a new block starting at that position in the 1% document
is created. Otherwise, all existing blocks that can be extended by the text
found at the current offset in the 2nd document are extended and their end
markers are appropriately updated. This process is continued till the end of
the document has been reached at which point the largest candidate block is
selected and returned as the common representative similar block of text in both
the documents.

Appropriate fuzzy measures as detailed in the section above are incorporated
while performing the activity of candidate block extension.

4 Ranking

The ranking algorithm is a fairly trivial idea. It just sorts all the candidate
blocks based on the size (number of characters) of the block and chooses the
274 largest block as the final intersecting block. The choice of using the 27?
block is purely empirical since I noticed that it gives a faithful representation
across many tests.



