Acknowledgements

We would like to thank our project guide, Prof. Jayant Umalec8guide Prof.
Rashmi Gugnani who have guided us throughtout the makirng®ptoject. Prof.
Neepa Shah, our project co-ordinator has been very helptusapportive of our
efforts.

We would like to specially thank The Head of the DepartmenCofmputer
Engineering, Prof. Deshpande, for granting approval fis groject as a BE
project. The Principle, DJ Sanghvi College of Engineering, DJ Shah also
merits a mention, because he has been generous enough teenamssion for
using the college resources for the project efforts tiledat

Our partners in crime who are responsible for working on #maaining 2
modules have been a pleasure and lots of fun to work with,5and Pascii with
their scrutiny filled vision have spotted many a mistake athave made during
the course of designing & implementing the data storagenengind hope they
will continue to. Anu, Shetty & Prakash have been a pleasureark with, and
we hope we can continue like this even in the future.

Mr. Sridhar Ganti’s help has also been much appreciate@ $iaavas the one
who first made us realize the basic concept of the projectit@domplexity we
were about to set foot to. He was the one to suggest sepathérdistribution &
replication part from the rest of the project, since it isit@dly independent from
the rest of the Data Storage Engine.

Last but not the least, we would like to thank all our friend&a&nily members
who have supported us throughout this ordeal, and have backe=ffort and have
had faith in us.

Contents

1 Existing system 5
2 Problem Definition with scope of the project 5
2.1 Problem Definition 0L 5
2.2 ScopeoftheProject. 6
3 Proposed Solution 6
3.1 Distribution 7
3.1.1 Fragmentation 9
3.1.2 Replication 9
3.2 DDLCommit 11
4 Requirement Analysis 11
4.1 Why distributed database? 11
4.2 Whyis Replicationneeded? 12
4.3 Independence from one single machine 12
44 ChoosinBQL. e 13
4.5 ChoosingC++ as the language of implementation. 14
4.6 ChoosingSNU/LINUX 14
5 Project Design 15
5.1 Proposed Architcture L L 15
5.1.1 UnixFile Abstraction. 15
5.1.2 BufferCache 15
5.1.3 BitmapLock Manager 16
5.1.4 DirtyPageManager, 17
5.1.5 Redologger, 18
5.1.6 TableLockmanager 20
5.1.7 DivisionofDiskSpace 20
51.8 Indexes 21
5.1.9 JoinProcessing 23
5.1.10 Securitylssues 0o 24
5.1.11 Multi-threaded Memory Allocator 26
5.1.12 SQL processingEngine. 28
5.2 DataFlowDiagram 29

Implementation 31

6.1 Schedule. 31
6.1.1 TimelineChart 31
6.2 ProjectResources 33
6.2.1 Hardware 33
6.2.2 Software 33
6.2.3 SpecialResources 38
Testing 38
7.1 TestPlan. e 38
7.2 TestCases& MethodsUsed 47
Maintenance 48
8.1 |Installation 48

Conclusion & Future Scope 49

Abstract

There are many relational databases in the market, both eocrathand
open source. However, we have identified what we believe todjer draw-
backs in their architectures. Having done this, we propodeutld a new
relational database system, that will, from the groundaguress these de-
ficiencies. Our group will implement a Storage Engine forrsadatabase.

We are implementing storage engine for a larger DistribiDathbase
project. Though our project is independent in itself, ithlvé meaningless if
the perspective of the whole Distributed Database is n@artakto consid-
eration. Therefore, we will, both in this report, and the fithesis, refer to
TDDB (TheDistributedDateBase) as a whole.

TDDB

1 Existing system

We realize that existing systems do not have provision feoraatic distribution
of data, and support for amalgamating that distributed datamatically on issue
of a SELECT statement.

They merely support full and partial replication which ddewe it's advan-
tages and disadvantages. There are a few commerciallyableagystems that do
have somenanualsupport for distribution of data but nothing that does this a
tomatically. This means that the user has to be aware of tbgsscontaining the
tables, or fragments of the tables. Another limitation gflieation is that there
is a limit beyond which a system can scale-up vertidadly we need to devise
means by which we can scale-out horizontally.

2 Problem Definition with scope of the project

2.1 Problem Definition

Current commercial implementations allow users to scatecatly by means of
adding more hardware, or implementing replication by medinsplicated copies
of the data. However, keeping in mind the current trends itaDaanagement
including Data Warehousing, and Data Mining[which are datansive opera-
tions], we need a solution which allows the data to scalezbatally. Scaling
horizontally simply means distributing the data on variouschines, and hence
distributing the computational as well as storage burdethevarious machines.

Lvertical scale-up means scaling-up by adding more hardwlaréact, Scale-up servers are
large SMP systems with more than four CPUs and one instante afperating system (OS) that
covers all processors, memory, and I1/O components. Géyehase resources are housed within
a single chassis or "box,” and resources are added to theib@ystem boards. Memory is shared
in SMP systems so all processor and 1/O connections havd aqoess to all memory. These
vertical systems are also "cache coherent,” meaning irdtiom is maintained on location of all

data regardless of cache or memory location.
°The alternative to vertical scaling is horizontal scalimgpjch works by networking racks or

clusters of volume servers. Typically, scale-out systeradiaked together via standard network
interconnects such as Fast Ethernet, Gigabit Ethernet GBI InfiniBand (IB). Resources are
contained within "nodes” — small servers with only one torf@PUs. Each node has its own
processor, memory, and operating system. Resources ad hggutting more nodes on the rack,
not by adding more resources within a node. Memory in a hat&architecture is distributed,

meaning it's typically accessed by each node’s CPU and s$@ited across the system.

Department of Computer Engineering, DJSCE 5

TDDB

Another aspect with respect to current implementatiortsasiethod of enforcing
the ACID properties on the database, and the efficiency eoaaghich may not
be quite up to the mark.

Hence, we would like to develop a system that allows the dathcampu-
tational overhead to be scaled horizontally by means ofidigton. And re-
implementing the storage engine to try and iron out the def@entioned above.

2.2 Scope of the Project

This project would be limited to data storage and retrieaatj may be used for
Data Warehousing and Mining applications too. Howevergetpg utmost effi-

ciency from it would not be wise, because it has many intggonstraints to take
care of while processing the data. Hence, data correctaesispreserving the
integrity of the data and at the same time ensuring reasemsiitiency would be

the primary goals of this venture.

3 Proposed Solution

The solution to the above problems lies in the automaticidigion of data, which
would allow:

1. Dynamic selection of a query plan based on which machinegamn the
required tuples,

2. Distributed Join, and Select.

3. Completely automatic distribution[vertical and hontal fragmentation] of
the dataftuples]

A distributed database consists of features like datailligion, data replica-
tion and options for choosing Storage Nodes for these #@esviHowever, there
are no commercially available databases which have featuhéch allow auto-
matic distribution of data and automatic Distributed Quexgcution. None have
the provision for automatic fragmentation. In a non-disited database, the fail-
ure of any one site may lead to the failure of the whole dawbakich would
lead to the global unavailability of data.

Many databases are overloaded because of excess dataisttirech. So, if
one site[the server] goes down all clients suffer from uilakdity of data.

We are trying to implement a distributed database systeraunter the above
mentioned problems & shortcomings. There will be many diteage nodes and

Department of Computer Engineering, DJSCE 6

TDDB

single server site. These data storage nodes are contyllétk single server
site. May it be any task, the server handles it by making d&tsson which data
storage node to be used.

3.1 Distribution

The primary function of TDDB is the distribution of the datraquired. For this
purpose we will be using Replication & Fragmentation. Botlhis can be used
together so as to store the data as required and as convéariémé database to
act on.

Data Storage Nodes

Cos

Master

Figure 1: Relationship between the Master & the Data Stokages

Figure 1 shows the relationship between Master and theData Storage
Nodesn TDDB. A singleMasteris responsible for manpata Storage Nodesand
directly controls them. The interface between them is th&8@L, so any other
database can seemlesly be plugged in place ofhEB Data Storage Engine
on theData Storage Nodeghus making it a kind oHeterogeneous Distributed
Database System

The Master in figure 1 can be one responsible for eifhistribution or Repli-
cation The structure and logical structure remains same for bdthis is the

Department of Computer Engineering, DJSCE

TDDB

reason why we can combine both these technidRiesjbution & Replication
in man possible ways. For eg. tbata Storage Nodean actually be dMaster
which is connected to many othBata Storage Nodes

Data Storage Nodes

EREY

Master

108

_ _
== =

Clients

Figure 2: Relationship between a single TDDB Master & Chent

Figure 2 shows the relationship between a singidB Master& Clients.
Here, there is just a singlEDDB Masterwhich is responsible for all Transaction
processing. The system is pretty straight forward, and sa it there was a
singlelocal DBMSrunning at theMaster site

Advantages:

1. All the data in the database is distributed by proper medrise data is
distributed evenly on all thBata Storage nodesSo none of the sites suffers
from overloading of data, or lack of sufficient d&ta.

2. Consider only one site executing a query. If a single nreels searching
entire database on its own it would take a considerable drdtime. Now
consitern number of data storage nodes in a database. Now the work load

3This is also knows as datkew We have assumedound-robindistribution of data in this
discussion of distributed databases.

Department of Computer Engineering, DJSCE 8

TDDB

is evenly distributed among thesites. So the Query processing becomes
approximatelyn times faster.

Disadvantages:

1. The only disadvantage in Distribution is that managindhe above pro-
cesses is quite complex. So maitaining the consistencyeotifitabase is
also quite complex.

3.1.1 Fragmentation

Fragmentation is a process in which the data is divided iattspas required by
the database. It depends on what part of data is to be stovdthasite.

3.1.2 Replication

Replication is the process of making copies of the data indtéitabase. These
copies maybe stored on all or on some server sites as regjbifrithe user. Also
the number of copies of the data may depend on the importdribe data. Data
that is used more frequently, or is more critical in natureyrba replicated at
all sites, while other data may be replicated at just a feassiAccording to the
importance of the data, replication is done.

Figure 3 shows the relationship between multip2DB Masters& Clients.
Here, there are Rlastersto which eaclClientis connected. AClientcan request
any of theMastersit is connected to to provide it with results of a Query, and ca
also firelnsertandUpdatecommands anyof theMasters Itis the responsibility
of the Mastersto perform synchronization between themselves, and etisgre
ACID properties of the data.

Advantages:

1. Full replication gives high availabilty of data. Sinceale copied at all the
server sites, data is available everywhere. Now even if dnlyeosites are
down or loose all the data, it can be made available from therdites.

2. A query failure in a replicated database is of a very lowbpfulity. Even
if one site is down, other sites can fulfill the request. Thiseg the data
protection from system failures.

3. At a time many non-blocking concurrent reads can be paeddron the
same data. This results in no loss of time. Instead of waitimga site
performing a read action, another site can be queried, wtherelata has
been replicated and there is no activity being performed.

Department of Computer Engineering, DJSCE 9

TDDB

Data Storage Nodes

Masters
i [. [

I I N
Clients

Figure 3: Relationship between multiple TDDB Masters & Gt

4. Also the geographical distance between the sites makegutbry process-
ing slow. A site requesting some data from a geographica#itadt site
would slow down the data transfer speed. So, it can be madgproach a
nearby site. This lessens the time for transfer of data. &ogtiery can be
executed faster.

Disadvantages:

1. To update a single copy of data all the copies on the otteensid to be up-
dated. It means many copies has to be updated at a singleTthmsesults
in lot of latency, which results in the system getting getigtanresponsive
and sluggish.

2. Updation of a copy requires it to be updated it on all sitésany of the
site fails to update it is means no other site can update tpeegoeven
though other sites may be ready for update. So it meansdaiurpdation
of the data, which ultimately boils down to the failure of th@nsacion as a
whole?

4We have assumed here that we are using a protocol in whicly ibae site fails to perform

Department of Computer Engineering, DJSCE 10

TDDB

3.2 DDL Commit

Data-Definition Language also known@BL is a special language that is used to
define a database schema using a set of data definif@is provides commands
for defining relational schemas, deleting relations, ars® ahodifying relation
schemas. This meamDL statements are the ones that provide the features for
constructing a database.

In a distributed databasBDL statements are given to all sites to do the work
of defining the schemas. The effect is seen only on the siteaixthe statements
are received and executed. Other sites, which didn’t redbir statements, remain
unaffected. Later when tHeML® statements to input data or change data on the
sites are given, the sites which didn’t receive the previdbDg statement(s) return
an error.

To avoid the above problem from occurring, commit DL statements is
implemented, as is done f@ML statementsCOVM T is a statement which al-
lows a Transactionto be executed atomically. If all the sites commit the data
successfully, then the commit statement is said to haveesder. On the other
hand, even if one site fails, then the commit is said to haveda

A similar concept is developed to tRDL statements. This is required for use
by the 2-phase commit protocol. We call this el COVM T statement.

4 Requirement Analysis

4.1 Why distributed database?

Distributed database carries out its work using fragmentand replication. In
normal databases, if any server is not working it may makesla tia be carried
out on entire database impossible to perform due to it’s aitehility. Also the
databases are overloaded due to unnessecary reasons. iéeviha data is dis-
tributed, there are mariyata Storage Nodet® perform this work. So overloading
of a particular site can be avoided.

The main purpose of distributed databases is distributfotme data as re-
quired by the usét. Replication and Fragmentation are used for this purpose.

the update, the whole transaction is deemed to have failedierter, this is not always the case,
and better protocols such as thkajority Protocolemploy bettwer methods, and allow the trans-
action to continue as long as a majority of the sistes are hpsd& are however more complex to

implement.
SDML stands for Data Manipulation Language
8In our caseTDDBitself can make this decision on its own.

Department of Computer Engineering, DJSCE 11

TDDB

Also, a combination of both can be used with good results.s Thil store the
data as required and handling with it will be convenient.

The need for distributed databases is going to increaseeifutiaire. This is
because a lot of data is being digitized or being stored ig@adiform these days
because:

e Itis cheaper to store data this way

e |tis easier to Search the data

It is more convenient to manage this data

It takes up lesser space as compared to voluminous paper files

Is a more environmentally friendly option

A part of this also arises from the fact that many differemtds of computing
devices will be on the network. As mentioned earlier, inrthstted database none
of the site will suffer from overloading and the query exémuitwill also speed

up.

4.2 Why is Replication needed?

Replication is the process of replicating copies of the dathe database. These
copies may be stored as and how wished by the server or the Replication
will also depended on the importance of the data. The morsafulidata, more
are the sites at which it will be replicated. Regional basad thaybe stored only
at the site required. Thus replication depends on the datalso the choice of
the user.

If full replication is done, it gives high availabilty of dat Even if any of the
sites are down or any sites loose all the data, it will be atéa from any other
site.

A query failure in a replicated database has a very low pritibal©n failure
of one site the data request can be fulfilled by another site.

Multiple reads can be performed on same data without logmef tif there is
a read request at a certain site, and a read is being perfantledt site, then the
request can be transferred to another site.

4.3 Independence from one single machine

In a distributed database, all the data is distributed onymaachines, that is the
Data Storage NodesTheseData Storage Nodeare controlled by the a server,

Department of Computer Engineering, DJSCE 12

TDDB

which is in charge for any and all activities taking placetaseData Storage
Nodes The server controls process ranging from constructioratdltase schema
to the execution of queries and returning the output. Theesean request any of
the Data Storage Nodefr data that it may require. But it does this on the basis
which results in a low cost of executing the query.

Thus a distributed database is independent of a single macéince data is
distributed all over the place.

4.4 ChoosingSQL

SQL is referred to aguery language But it can do just more than just a query
language that queries a database. It can define the strudtthre data, modify
data in the database and also specify security constraints.

SQL is the most influential commercialy marketed query laggu SQL uses
a combination of relational-algebra and relational-cliswonstructs.

SQL has several parts which are very useful to constructabdae.

e Data-definition languagbDL

e Data-manipulation languadaMVL
¢ View definition

e Transaction control

e Integrity

In this project, we will be using SQL as the interface for conmeation to and
from the database. This is because SQL is one of the mostywided language
in databases. Almost all people working on databases aleasgliainted with
the use of SQL. Since project will be implementing SQL, noitdidal training
will be required to work on our system language.

SQL uses realtional-algebra. It is generally considerextigwactice to create
relational databases. Relational querying is easy to gtalet and implement.

Due to all these features of our system, people and institativorking on
our database system won't face problems while shiftingvatigg to our system.
Thus shifting from the older system to our system won’t bedreamd will be a
seamless transistion for them. This will reduce the inttiaining cost, and also
no time will be wasted training the employees after the itenmsis made.

Department of Computer Engineering, DJSCE 13

TDDB

4.5 ChoosingC++ as the language of implementation

C++ is one of the most commonly used language for systemsaroging, and
produces High Quality code. C++ is a language which is neightow level
language nor a high level language. C++ has the low level poW€, but at the
same time it allows us to abstract our ideas similar to otiggr level languages.

There are many inbuilt functions and templates which carsked easily. Also
defining and using of new functions is easy. There are in-tatia-types and also
provides us with the facility of creating user-defined dgfaes. So data-types and
the functions can be used as required and needed by the user.

C++ supportggeneric programmindpy means of a feature calleadmplates
Templatesallow you to write code which is independent of the undedydata
type you are using, and allows you to cathta structures and algoritmsuch as
sorting, searching, etc. .which are data-type independent.

Finally, the icing on the cake is tHeTL[Standard Template Libraryihich
C++ is well known for. TheSTLis a collection of highly efficient pre-coded
templates, which allow you to accomplish routine tasks \eagily. TheC++
STLcomprises a large number of data structures and algorithimshvare used
very commonly.

4.6 ChoosingGNU/LINUX

GNU/Linux is a very stable Operating System. It works effitig on many kind
of machines, be it one with older or newer hardware configamatCrashes on
linux are rare. Generally most of the servers and machines fos high produc-
tivity or tough tasks work on linux.

GNU/Linux quite is secure in comparision with other OpargtiSystems.
Since the servers and other clients are going to store impiodata, it is nec-
essary to provide a secure environment. The system filedwanéconly visible in
root usefadministrator of the systengan’t be modified by normal users. So this
ensures Linux provides security to important files, dataudoentsm and devices.

Also since GNU/Linux is freely and readily available, it wdibe easy for
anyone to procure a copy. This does not increase the cost gkthup.

Department of Computer Engineering, DJSCE 14

TDDB

5 Project Design

5.1 Proposed Architcture

The Data Storage Engine which we will be working on will hawdesaign similar
to that described below:

5.1.1 Unix File Abstraction

The lowest Level of the Data Storage Engine would be the UNIXAbstraction
layer. This Layer provides a device independent interfa@etess just about any
device on the system using a simglpen()system call. You can read from &
write to this file using theead() & write() system calls.

The database engine would operate on just a single file, witdald be just
Raw disk space for fast access, thus avoiding the OS Filee®ykayer. This
would mean that we can format this Raw disk space in any way ish,vand
make the data storage/retrieval as efficient as we wish to.

5.1.2 Buffer Cache

The Buffer Cache is #age Cachéwhich stores all théMlost Recently & Fre-
quentlyused pages in memory. The algorithm used is a mix of both thkgse
rithms, and is implemented using logic similar to tbdaanded clock algorithm
for page eviction.

The buffer cache will be constructed as a collection of Hasites with chain-
ing for handling overflows with each bucket provided by ivgromutex.

The Page Evicition function will be called only when all memdocations
are exhausted and there is no more room for housing new pagesmory.

The details of the page replacement algorithm are as follows
e Everytime the page is referenced, the 13-bit counter i€mented by one.

e The daemon thread for a particular paggehe is run only if the number of
free pages for that pageache is less than 10% of the total number of pages
on that pagecache.

¢ In the daemon thread, the value paage is checked against nélw If it is
< newlb, then newlb is set to the new value, else, ndis left untouched.

A Page is defined by the TDDBAGE_SIZE macro, and is typically 8kB in size. A Page is
the smallest unit of data which will be read off the disk at shet.

Department of Computer Engineering, DJSCE 15

TDDB

¢ In the daemon thread, the age for every page which has an agé ao>
1% of the agamax is decremented by one whenever the daemon thread runs
for that particular pageache and encounters that buffer.

e While referencing a page, if the age for a page reachesrage it is made
age_mazx
AT,

e New pages entering the system are given an age ofrage

e The pages to be evicted are evicted not byatfepass of the clock but by
the thread itself which finds that the number of pages haspeueelow
min_free. It then tries to free mafkkee pages.

e The pages to be selected are those which have ar @@ ge + 1. If in the
first pass, not enough pages can be evicted, then the afean#tkes another
pass, but this time usé®_age + 2) * 2 as the quantity to check against. If
this too fails, then, the the quantity is set¥5~**, and if this too fails,
then pages are evicted sequentially as and when they arargeced.

5.1.3 Bitmap Lock Manager

The Bitmap Lock Manageis a Page level bitmap lock manager. It has 1-bit
reserved for ech page in the database. This ensures reésepabe efficiency of
the implementation. All dictionary operations such as:

e Locking a Pageé
¢ Unlocking a Page
e Checking if a page is locked

take constant time.
For a database of siZz®0GB assuming the page granulafitp be8kB, and
overhead per page to be 1-bit, the total space overheé%%%
= 52428800bits
= Wbytes
= 6553600bytes
=6.20MB
In terms of percentage, this is an overhead of 0.000015258Bih is quite
negligible.

8Locking a page make take more time if that page has already loeked by some other

Transaction, because the current page has to then waitdofitAnsaction to unlock the page.
%also called as Page Size

Department of Computer Engineering, DJSCE 16

TDDB

A Transaction Locks a Page using the bit-map Lock whenng¢agling from
or writing to it. This is done to ensure that no other transaction can neaw 6r
write to that page while the current Transaction is readiogfor writing to it. It
also ensures that concurrent transactions do not modifgabe at the same time.
The reason we have this lock in place while reading from ORingrito the page
is that certaifsolation Levelsuch aDirty Readcan read from the table while it
Is in the process of being modified, so such transactionstiock the page before
reading from it.

5.1.4 Dirty Page Manager

The Dirty Page Managets similar in structure to th&itmap Lock Manageand
has similar space & time complexity, but the reason for iXs&nce is entirely
different from that of théBitmap Lock Manager

The Dirty Page Managelis used to mark pages &srty. A page is called as
Dirty when it has been modified by a Transaction, but it has not bestemback
to disk. When a page @irty, it may be:

e Entirely in memory
e Partially in memory, and partially on the Redo Log
e Fully on the Redo Log

Thus, it would be an error for another Transaction to reac @t that page,
because it would undoubtedly contaitaledata.

Another reason for marking pagesasgy is thatControl Informationin the
header needs to be updated, and Transactions can not afficeadstale Control
Informationfrom these page headers. If such a situation occurs, theayit@ad
to problems such as Transactions using the same free spacikgaiser data.

So, from the definition of alirty page, it follows clearly that only the origi-
nating transactiof can read from or write to that page again. Other transactions
must thusalways querythe Dirty Page Managerto check if the page they are
trying to read from or write to has been marked as dirty by atiezdransaction.
If so, then, they can not rely on the information they readnfithat page. These
transaction can then either:

e Try to read data from another page, or

e Wait for the current page to be markedasan

00rignating Transactiorhere means that one that marked the page as dirty.

Department of Computer Engineering, DJSCE 17

TDDB

5.1.5 Redo Logger

How Consistency is to be maintained?

The value of the attributes when being updated, care is tdianf update
doesn't take place then the old values are not lost and regliacthe place of the
unchanged attributes. This is the property of consistehey@atabase.

There are two ways to implement consistency.

1. Undo

2. Redo

1. Undo:

In this method, the attribute values which have to be changedstored
in a temporary location before being changed. After stotirggvalues in
the location, the new values are written in the location efakiributes. If
the process of writing of new values takes place completkdn the old
values stored are completely discarded. Or else if they aravritten in

the attribute location, then the old values from the temppol@cation are
copied back to their respective location. This undo metisoased where
success rate of transaction is high.

Since the system roll backs to its old state if any of the @atisn did not
succeed, this method is calléthdo. Also the temporary location used to
store the attribute values is calledldsdo Log

Advantages:

e Undo method is used when most the transactions in the datalbas
ceded.

Disadvantages:

e During updating the attribute values, other concurrerdeeshave to
refer to the temporary location. This may be time consunsig;e an
extra level of indeirection is needed.

. Redo:

In this method the attribute values which have to be changedimred
in a temporary location before being changed. After stotirggvalues in
the location, the new values are written in the location efakiributes. If
the process of writing of new values takes place completegn the new

Department of Computer Engineering, DJSCE

18

TDDB

values stored are completely discarded. Or else if they@rentten in the
attribute location, then the new values from the temporacgtion are still
present in the temporary location. This redo method is udeet@vsuccess
rate of transaction is low. That is the transactions tendito f

Since the system proceeds to its new state if the transastioeeds the
method is calledRedo Also the temporary location used to store the at-
tribute values can be called Redo Log

Advantages:

e Redo method is used when most the transactions in the dat&bhs

e During updating the attribute values, concurrent readarsrefer to
the original location on disk of the attributes. This medrat toncur-
rent readers do not suffer a performance hit when anothesdcdion
writes to data in the tables.

Disadvantages:

e The redo process may be time consuming.

e The transaction which writes data to the tables must now tefthe
Undo Logto read the newncommittedialues in the table. This means
an extra level of indirection is needed, which slows thingaal a bit
for the transaction which made the changes.

Comparision of Undo and Redo

Generally theedo methods preferred over thando methodThis is because
the new attribute values are stored in final database onheifttansaction suc-
ceeded. Whereas in thendo methodvhatever may be the fate of transaction,
new attribute values are written. This leads to complicatior.t multiple trans-
actions reading off from the same table. If tHado methods being used, then
the concurrent transactions need to read the un-commitiees from the undo-
log. This inderection can be the reason of some inefficienajevaccessing the
database. Also, this method increases the internal cortypt#xhe database im-
plementation. However, if thRedomethod is being used, we need not be worried
about any such problems, because new values are writtee thatabase ONLY
if the transaction succeeded.

TDDBuses thé&redo Methodio ensure consistency of data in the database, and
for this purpose, a special region on disk called ad thggging Segmersgreserved
to house theRedo Log When any transaction wishes to modify any data, it is
written out to theRedo Logand then the data in tieedo Logs played. If it were
to fail, then it can be replayed when the system is re-stafteds, consistency of
data is ensureed.

Department of Computer Engineering, DJSCE 19

TDDB

5.1.6 Table Lock manager

TheTable Lock manages responsible for performing locking on the tabfesnd
thus ensuring consistency of data in the database.
There are currently 5 modes in which a table can be lockedy &tes

1. Read ModeA table is locked by a transaction in this mode if it wishes to
read data from it.

2. Insert Mode:A table is locked by a transaction in this mode if it wishes to
indertdata into it.

3. Update ModeA table is locked by a transaction in this mode if it wishes to
updatedata in it. Updationalso includesleletionof data from the tables.

4. Serializable Mode:A table is locked by a transaction in this mode if it
wishes to lock the table iSerializablemode. This is a special mode in
which otherSerializabletransaction are not allowed to perfordirty or
phantom readfrom the table, and must wait for the locking transactfdn
unlock the table. This mode corresponds directly toSkealizable Mode
mentioned in th&sQL92 Standard

5. Critical Mode: A table which is being modified[data is being written to the
database from thRedo Log has to be locked in this mode before any mod-
ification is possible. This mode ensures thatothertransaction can write
to the table while some other transaction is writing to itthiis enforces
mutual exclusiomn the true sense.

5.1.7 Division of Disk Space

How is Raw disk space to formatted for use by TDDB?

TDDB creates managable units of disk space by which it logocaltbygs
these units and makes sure that this dsk space managemexttegpmssible in an
easy and efficient manner.

Starting from the highest to the lowest granularity, thewlttg units of disk
spacs are present irDDB:

1. Group Block: A group block is the most granulary unit of disk space in
TDDB. The Raw disk space obtained from the Disk is partitioneal inany
Group Blocks

This means table-level locking.
120ne that has currently locked the table.

Department of Computer Engineering, DJSCE 20

TDDB

2. Chunk Block:Each group block contains ma@hunk BlocksThese chunk
blocks have a fixed size just like the group blocks they belimngEach
chunk block has pages ohly a specific type.

3. Disk Page:EachChunk Blockcontains manyisk Pages TheseDisk Pages
are of many types, a few of them being:

e Fixed-size Tuple Pagevhich holds each tuple’s fixed-size portion.

e Overflow Pagewhich holds overflow entries for many types of fields
in a table.

¢ Blank Page:which generally is used to stofd_OBentries.

5.1.8 Indexes

Indices are commonly used to enhance database performancedex allows
the database server to find and retrieve specific rows mutdr féisn it could do
without an index. However, indexes also add overhead to dkehdse system as
a whole, so they should not be overused.

1. B-tree Index:
TDDB uses a B-tree structure to organize index information. Ayfde-
veloped B-tree index is composed of the following threeeddht types of
index pages or nodes:

e One root node. A root node contains node pointers to brandaso

e Two or more branch nodes. A branch node contains pointersato |
nodes or other branch nodes.

e Many leaf nodes. A leaf node contains index items and hotaon
pointers to other leaf nodes.

The fundamental unit of an index is the index item. An indexitcontains
a key value that represents the value of the indexed columa farticular
row. An index item also contains rowid information that tlegabase server
uses to locate the row in a data page.

Nodes:A node is an index page that stores a group of index items.
How does TDDB create and fill a B-tree index?

Creation of Root and Leaf Nodegvhen you create an index for an empty
table, the database server allocates a single index pagepdde represents
the root node and remains empty until you insert data in thie ta

Department of Computer Engineering, DJSCE 21

TDDB

At first, the root node functions in the same way as a leaf néae.each
row that you insert into the table, the database servereseatd inserts an
index item in the root node.

When the root node becomes full of index items, the databaserssplits
the root node by performing the following steps:

e Creates two leaf nodes

e Moves approximately half of the root-node entries to each@hewly
created leaf nodes

e Puts pointers to leaf nodes in the root node

As you add new rows to a table, the database server adds iedes to the
leaf nodes. When a leaf node fills, the database server sraatew leaf
node, moves part of the contents of the full index node to #vemode, and
adds a node pointer to the new leaf node in the root node.

Eventually, as you add rows to the table, the database sksehe root
node with node pointers to all the existing leaf nodes. Winendatabase
server splits yet another leaf node, and the root node hasaro for an
additional node pointer, the following process occurs.

The database server splits the root node and divides itets®mong two
newly created branch nodes. As index items are added, marenane

leaf nodes are split, causing the database server to addbraoreh nodes.
Eventually, the root node fills with pointers to these branoldes. When
this situation occurs, the database server splits the rodé mgain. The
database server then creates yet another branch leveldsetieroot node
and the lower branch level. This process results in a fotgtigee, with

one root node, two branch levels, and one leaf level. TheeB-structure
can continue to grow in this way.

2. Hash Index:
Hash Indexes useEash tableso implement indexes. A B-tree Index can
not be used for multi-attribute indexes, but is well suiteddingle-attribute
indexes. Hence, Hash Indexes are needed in such situatiash. Indexes
can not be used is when relational operations other gwamlity, such as
<, >, <, > are to be used, because unlike B-trees, Hash Tables do niot wor
on comparison between key values, but work on the principkxaating
theHash Valueof the key with theHash Valueof other keys.

Department of Computer Engineering, DJSCE 22

TDDB

5.1.9 Join Processing

The efficient implementation of joins has been the goal ofimuiork in database
systems, because joins are both extremely common but rdiffieult to execute
efficiently. The difficulty results from the fact that joinsesboth commutative and
associative. In practice, this means that the user merelyli®s the list of tables
to be joined and the join conditions to be used, and the ds¢atgstem has the
task of determining the most efficient way to perform the apen. Determining
how to execute a query containing joins is done by the quetiynager. It has two
basic freedoms:

1. join order: because joins are commutative, the order in which tables are
joined does not change the final result set of the query. Hew@in order
does have an enormous impact on the cost of the join operatarhoosing
the right join order is very important.

2. join method:given two tables and a join condition, there are multiplealg
rithms to produce the result set of the join. Which algoriiemost efficient
depends on the sizes of the input tables, the number of ronsdach table
that match the join condition, and the operations requinethb rest of the

query.

Many join algorithms treat their input tables differentlihe input tables are
referred to as the outer and inner tables, or left and rigspectively. In the case
of nested loops, for example, the entire inner table will tensed for each row
of the outer table.

Join algorithms

There are four fundamental algorithms to perform a join apen.

1. Nested loops:

This is the simplest join algorithm. For each tuple in thesoyin relation,
the entire inner join relation is scanned, and any tuplesrttzch the join
condition are added to the result set. Naturally, this allgor performs
poorly if either the inner or outer join relation is very larg

A refinement to this technique is called "block nested loopst every

block in the outer relation, the entire inner relation isrsead. For each
match between the current inner tuple and one of the tupléseircurrent
block of the outer relation, a tuple is added to the join resetl. This variant
means that more computation is done for each tuple of the refegion, but

far fewer scans of the inner relation are required.

Department of Computer Engineering, DJSCE 23

TDDB

2. Merge join:

If both join relations are sorted by the join attribute, tbenjcan be per-
formed trivially:

e For each tuple in the outer relation,

— Consider the current "group” of tuples from the inner raatia
group consists of a set of contiguous tuples in the innetiogla
with the same value in the join attribute.

— For each matching tuple in the current inner group, add atiapl
the join result. Once the inner group has been exhausteu et
inner and outer scans can be advanced to the next group.

This is one reason why many optimizers keep track of the swigroof
guery nodes — if one or both input relations to a merge joinlisaay
sorted on the join attribute, an additional sort is not reeplhi Otherwise,
the DBMS will need to perform the sort, usually using an exa¢isort to
avoid consuming too much memory.

3. Hash join:

Applying the Hash Join algorithm on a inner join of two reteis proceeds
as follows: first prepare a hash table for the bigger relatignapplying a
hash function to the join attribute of each row, and then sbansmaller
relation and find the relevant rows by looking on the hashetabl

4. Semi join:

A semi join is an optimization technique for joins on distribd databases.
The join predicates are applied in multiple phases, stawtiith the earliest
possible. This can reduce the size of the intermediateteethdt must be
exchanged with remote nodes. Thus reducing inter node mletvadfic. It
can be improved with a Bloom-Filter (hashing).

5.1.10 Security Issues

Securityis a major concern in any non-trivial database managemstgsy espe-
cially a distributed database management one su¢ib&d, which relies heavily
on thenetworkfor transfer of data.
We have developed an access method which tries to reduceskhe the se-
curity of the system being compromized, and confidentiat data being leaked.
We have thought of a strategy which tries to minimize[noaligteliminate]
the influence of the man in the middle. We'll describe it beldlowever, before

Department of Computer Engineering, DJSCE 24

TDDB

we delve into the details of that, let's see why we considénedpublic/private
key solution not good enough.

1. Who would have the private key? If the server were to havthén the
public key would have to be transferred to the client, whigh be picked up
by the man in the middle[referred to BHM in the rest of this document],
and then used to encrypt data. Ok, you say that the passwaultti be
encrypted within the public-key encrypted message thaclieat sends,
but then, theMIM an just pick up that request that the client sends to the
server, and keep firing it, and overloading the server[D@&:k}.

2. The client can send the server encrypted informatiorhowtcan the server
send the client encrypted information? Of course, it can betause the
client has only a public key. So, you say make another setys &Ewhih
the client has the private key, and the server has the puélic Rut then
again, theMIM can cause havoc by intercepting packets and sending them
for another query that the client fires. It[the client] wike no clue that
they are junk packets. Ok, this can be solved u3its which must match.
Meaning when the client sends a request, it also sernt®awhich the
server must send back to indicate it is a valid response. Thiscould be
sent in an encrypted fashion. However, we are again studkegbroblem
of encrypting theTID!

3. PGPhas been cracked, and having a static hash key is alwaysvieahte.
This leaves a lot of room open for hacks.

So, we have decided to go with the apporach described belalble T contains
the list of symbols used.

P —The password of the user.

R —A string of random numbers.

Q —The user’s query string.

h(X) —Hash function applied on string X.
P+R —Concatenation of 2 strings P & R.

Table 1: Symbols used

1. The client tells the server that it wants to initiate a si&ction.

Department of Computer Engineering, DJSCE 25

TDDB

2. The server sends sends the client a random string R. Tlsisnisunen-
crypted.

3. The client constructs(P + R) with the P obtained from the user. Si-
multaneously, the server also computé® + R) from the P stored in it’s
database.

4. The client now gets the user’s query stripgand compute§ © h(P + R).
This is the string that is sent to the server.

5. The server XORs the received string withP+), and gets back the actual
data that it is supposed to receive.

Thus, theMIM is rendered practically impotent! The problem can arisg onl
when the server generates R which has already been genéeftad and the
same user is using it, and tMdM has logged the previous, and has been able
to determinéi(P + R) for that P& R, and is quick to enough to retrieve it. A very
rare occurance if R is a pretty large number.

5.1.11 Multi-threaded Memory Allocator

TDDB is a multi-threaded application capable of running on an Hiyptocessor
machine, and taking advantage of features like:

e Multiple Threads of exection
e Multiple Processors

It uses these features to produce the results to user queviesefficiently>.

Theory of Design of the Allocator

This implementation involves maintaining 2 free lists fach thread, for
each bin-size. One of the lists would be the allocation &st] the other would
be the deallocation list. Whenever objects are to be akuolahey are given
off from the allocation list, and whenever, they are fredwytare put into the
free/deallocation-list. This is a truly multi-threadedaatructure, which is not
quite scalable, but multiple data structures of the same kiake it linearly scal-
able over a large domain. This means that while neither tbheatlon/deallocation
lists interferes with each other, also no locking is reqiiir€his scheme also si-
multaneously solves the problem of locality, producerstoner model programs,
and false sharing to a large extent. There is also a global feeaach bin-size,

13gy efficiently here we mean faster, or in a lesser amount of time.

Department of Computer Engineering, DJSCE 26

TDDB

which is maintained as a linked list of super-blocks, whicaynmot necessarily
be from the same physical/virtual page, but are of size 1 cadgep, that is the
total memory of the links in a logical super-block is 4K or 8€pending on your
choice! One thing to be noted here is that the blocks in trecate-list may not
necessarily be a multiple of the page size in the system. &éson for this will

become clear shortly. Now, follows a description of the &lipon for the alloca-

tion of memory from the above-mentioned allocator.

Algorithms for the Allocate and Deallocate functions:
e Allocate(Size) Begin

1. Search the allocate linked list for a free block of sizeeSiZhis op-
eration just involves checking the correct bin for the exise of a
non-zero link in the bin’s linked list.

2. If such an entry exists, then we just return it to the uséne@vise, we
ask the deallocate-free list to give us some memory, whiahlsast 1
block in size, so that the current request can be satisfied.

3. The deallocate-free list will first lock itself, and theneyy itself to
check if it contains at least 1 entry. If so, it will make the&iof
the deallocate-list O, unlock itself, and will return thattry to the
requester, or else it will unlock itself and query the gloeap for an
entry that is 1 or 2 Pages in size.

4. The global pool in turn will first lock itself, and queryéé to check if
it contains a valid super-block, which is nothing but a l@gigage or
2-logical pages. If they exist, they are removed from the-fist, the
global heap is unlocked, and the super-block is given togheester.
If not, then the global-heap is unlocked, and a page or a eoofpl
pages are allocated from the page memory allocator, thecheade
written, and is returned.

End.

e Deallocate(Pointer) Begin

1. Lockthe correct deallocate-list, add the entry Poird¢né deallocate-
list, and increment the Size of the deallocate-list by 1hdfsize of the
deallocate-list is equal to a page, or 2-pages, whatevenseenve-
nient, return it to the global-pool, and set the Size of theldeate-list
to 0. The global pool treats the memory list as a super-blax#,adds
it to the list of its super blocks. Finally, we unlock the deahte-list.

Department of Computer Engineering, DJSCE

27

TDDB

End.

The addition of a logical page to the global-pool is made sy first
locking it, and then adding the logical page to the front & super-block free-
list. Finally, the global-pool is unlocked.

Thus, it can be seen that there is not strict need of lockiegerty stage of the
allocator. Atomic operations can be implemented usingaléifies provided by
the underlying Operating System.

5.1.12 SQL processing Engine

The SQL processing Engine is the main interface of the TDDBimswith the
SQL Parser. The SQL Parser will parse SQL syntax, and crelastpar object
for each type of SQL statement, which will be handled appadply by the SQL
processing Engine. The SQL processing Engine currentlglrarthe following
SQL statements:

o CREATE TABLE

o CREATE DATABASE

e DROP TABLE

o DROP DATABASE

e SELECT

e INSERT

e UPDATE

e DELETE

e BEGIN WORK/TRANSACTION
e END WORK/TRANSACTION
e LOCK TABLE(S)

e UNLOCK TABLE(S)

e SET ISOLATION LEVEL

o COMMIT

e ROLLBACK

Department of Computer Engineering, DJSCE 28

TDDB

1.User Query
Client | SQL Parser

2.Query
Execution
Plan

6.Result
to Client

3.Subqueries
SQL Interface |- Master Node(s)

4.Query
Execution
Plan

5.Result
Set(s)

Data Storage Nodes

Figure 4. The Data Flow Diagram showing how a Query is prasgss

5.2 Data Flow Diagram

Figure 4 shows the Data Flow Diagram for how a Query is prastsy TDDB.
The following steps occur in processing of a Query:

1. Step - 1:The user fires a Query, and it is checked for syntactic coresstat

the client side itself. Syntactic correctness includesghilike omission of

the FROM Clauseor omission of what t§ ELECTin a SELECTstatement.

These errors are independent of the schema of the tableladrade, and can
be detected at the client side itself. This saves some anobuaetwork data

transfers, and reduces the load on the network, and alsoalgrspeeds up

Query processing.

. Step - 2:The Query is sent to tHe@QL Parserand is checked for other errors
which depend on the schema of the table and database, sunteasga
field name in &SELECTstatement while a field with such a name does not
exist in that table, etc. ... If thBQL Parseretects that there is an error, it
notifies the sender about such an occurance.

. Step - 3:TheMaster Nodeggeneratesub-queriegor each of theéData Stor-
age Nodesonnected to it, and sends thesgb-queriego each of these
Data Storage NodesHere, many optimizations are possible based on the

Department of Computer Engineering, DJSCE 29

TDDB

type of fragmentation or replication involved. TMaster Nodemaintains
meta data about all the tables it manages. Hence, it it algerform such
optimizations.

. Step - 4:A process similar t&teps 1 & s performed here, except that this
is at theMaster & Storage Nodeterface. Here too, th8QLgenerated is
processed by th8QL Parserand aQuery Evaluation Plars generated for
processing this query.

. Setp - 5:TheResult Set(sAre sent back to thdasterafter being generated
by the Data Storage NodesThe union of these constitutes the final result
in most casesHowever, many a time, Z0RDER BY or GROUP B¥lause
in the original query needs to be processed aMister, and hence, these
tuples are further processed here.

. Step - 6: The final result set is sent to the client by thlaster This step
marks the end of the Query Processing cycl&éDDB.

Department of Computer Engineering, DJSCE 30

TDDB

6 Implementation

6.1 Schedule

6.1.1 Timeline Chart

Wark

Tasks

Wi

Wi

wa Wy

ws

Wa

w7

WE wa

Wi

L

LLL

L2

(%]

LIiL

112

X3

L3

L3l

L3z

AMNALYSIS PHASE

Ll

Lz

DESIGN PHASE

Figure 5: Time Chart: Week 1-10

Department of Computer Engineering, DJSCE

31

TDDB

Waork
Tasks

wi

Wi Wi Wis Wwia w7 Wis

wie

LIl
L1

DESIGN PHASE

Gl E| B &

IMPLEMENTATION PHASE

Figure 6: Time Chart: Week 11-20

Wi

gl

§|
=|
2
=
-1

wm | wi wms|w

Wil

Figure 7: Time Chart: Week 21-30

Department of Computer Engineering, DJSCE

32

TDDB

6.2 Project Resources

6.2.1 Hardware

The hardware required for the project is:

e x86-64 architecture machine.
e Borad-band internet.
e Dual processor machine for testing concurrently execlutode.

o Sufficient RAM [8GB] for executing largdoins andSortson large tables.

6.2.2 Software

e GNU/Linux : Operating System

We decided to go in for UNIX-like system to develop our projedNIX
is a very old, but highly effective, stable, and reliablepesven by various
systems around the world over the years. In fact, most, ifatipof the
major databases you would trust your life withrun on various Unicés.

The GNU/Linux operating system is a very high-quality impentation of
the UNIX standard. Moreover, it’s free for use by develop@rsd busi-
nesses that have good in-house technical support). Weatidn't decided
which distribution of Linux shall be our development plaitfg but we shall
spare no efforts to ensure that the system works on all mapuxidistri-
butions out there.

The ones in reckoning for our attention are :

— Fedora Core

— Novell Suse Linux
— Mandriva

— Debian GNU/Linux
— Gentoo

For now, we are continuing our development efforts on Red-Hat

4Hospitals, banks, airports ...
15p|yral of Unix.

Department of Computer Engineering, DJSCE

TDDB

e g++: A Standards compliant C++ Compiler

A Standard compliant C++ compiler is required to compilesbarce code
of the project. This compiler should support the full C++wtard, and also
allow machine specific inline assembly and C code. Being dmapng
compiler, is an added advantage.

e emacs : A text-editor

A syntax recognizing text-editor such as emacs which hdsuld support
for languages such as:

-C

— C++

— Assembly
— Latex

Is useful, because it eliminates many of the syntax erroiewlriting the
code.
e valgrind : a memory error detector for x86-linux

One of the most common and worst errors while programmingngliages
which allow you to deal with pointers are:

— Memory leaks and
— Memory Access Violations.

Valgrindis a memory leak detection tool, which does just that. It isealfy
available tool licensed under the GNU/GLP. However, it vearkly on x86-
linux.

e scons : a software construction tool

scongs a tool which allows you to create builds for large projenta very
short amoyunt of time. It allows you to handle complexity ineaty simple
and elegant manne&congs a tool which provides functionality similar to
the GNU build tools such as:

— Autoconf
— Automake
— make

Department of Computer Engineering, DJSCE 34

TDDB

Scondgs written isPython and allows you to writ€ythoncode in the build
script.

e |ATEX: structured text formatting and type-setting tool

IKIEX is a tool which allows you to create professional looking utaents
in a jiffy. In fact this document has also been written usfigX.

e doxygen : Documentation system for C/C++, etc...

Doxygen is a documentation system for C++, C, Java, ObedivPython,
IDL (Corba and Microsoft flavors) and to some extent PHP, @4, 2.

It can generate an on-line documentation browser (in HTMhg/ar an
off-line reference manual (ifIeX) from a set of documented source files.
There is also support for generating output in RTF (MS-WoR)stScript,
hyperlinked PDF, compressed HTML, and Unix man pages. Tkamen-
tation is extracted directly from the sources, which makesuch easier to
keep the documentation consistent with the source code.

e Flex: Alexical analyser

flex is a tool for generating scanners: programs which reisegiexical
patterns in text. flex reads the given input files, or its staddnput if
no file names are given, for a description of a scanner to gémerThe
description is in the form of pairs of regular expressions @rcode, called
rules. flex generates as output a C source file, ‘lex.yy.ciclwidefines a
routine ‘yylex()’. This file is compiled and linked with thelfl’ library to
produce an executable. When the executable is run, it aaglisinput for
occurrences of the regular expressions. Whenever it findsibexecutes
the corresponding C code.

flex can be used to generate a C++ scanner class, using theptien,
(or, equivalently, ‘%option c++’), which is automaticalspecified if the
name of the flex executable ends in a ‘+’, such as flex++. Whemukis
option, flex defaults to generating the scanner to the fileylecc’ instead
of ‘lex.yy.c’. The generated scanner includes the headetHlexLexer.h’,
which defines the interface to two C++ classes.

e Bison : A parser generator

Choosing the tools for creating an interpreter was not sémpéx and yacc
are the traditional tools in the Unix environment, howeuvbgey are pri-
marily ‘C’ language tools, and would not blend very well iritee object-
oriented nature of development that we intended to pursiie other choices
that we had were:

Department of Computer Engineering, DJSCE 35

TDDB

— Lemon
— ANTLR
— BisonCPP

e Lemon

Lemon itself has been used in SQLite, an embedded databgseeihe
lemon parser too is C based, but it is functionally differgotn the Yacc
parser. For one, in most conventional parsers, it is theepaéinsit calls the
lexer for tokens. However, in lemon, it is the lexer that €dHe parser.
Also, the parser generated by lemon is thread-safe, i.eanitbe simply
plugged into a multithreaded program without any probleH®wever, the
grammar specification for a lemon differs from that of yacc.

e ANTLR

ANTLR parser is a Java-based parser generator. Due to tkefdava de-
velopment tools on the Unix platform, this aspect weigheavitg against
ANTLR. However, it is a parser with an n-level look-ahe&d We under-
stand this to be an advantage, but our knowledge of compdenesently
too limited to judge whether this makes it a better choice.

e BisonCPP

BisonCPP is a port of the bisbhparser generator to C++. This seems to
be the only possible advantage of BisonCPP. Unless we hayesgeaous
issues with Yacc, there seems to be no compelling reasoretib. us

e Our choice

We decided to go ahead with a flex + bison combination, whieliteg GNU
versions of lex and yacc respectively. The decision fadteasweighed in
favourably in favour of these were:

— Easy availability on modern distributions of GNU/Linux.
— Plethora of documentation on line.
— Well-tested, and have been stable for years.

— Other successful databases like PostgreSQL and MySQL esathe
tools.

8The number of tokens the parser reads without pushing théotoa stack
1"GNU version of Yacc

Department of Computer Engineering, DJSCE 36

TDDB

— Success in making the parser generated by these tools tbaéti

e CVS - Concurrent Versions System

CVS s a version control system, an important component af&Config-
uration Management (SCM). Using it, you can record the hystésources
files, and documents. It fills a similar role to the free sofeVBCS, PRCS,
and Aegis packages.

CVS is a production quality system in wide use around thedyamcluding
many free software projects.

While CVS stores individual file history in the same formaR&3S, it offers
the following significant advantages over RCS:

— It can run scripts which you can supply to log CVS operationsre
force site-specific polices.

— Client/server CVS enables developers scattered by gelogasiow
modems to function as a single team. The version historpredton
a single central server and the client machines have a coal} thfe
files that the developers are working on. Therefore, the otJe-
tween the client and the server must be up to perform CVS tpesa
(such as checkins or updates) but need not be up to edit opmani
late the current versions of the files. Clients can perfoirthal same
operations which are available locally.

— In cases where several developers or teams want to eachamaheir
own version of the files, because of geography and/or pdl®&’s
vendor branches can import a version from another team (etlezy
don’'tuse CVS), and then CVS can merge the changes from tlimwven
branch with the latest files if that is what is desired.

— Unreserved checkouts, allowing more than one developeot& an
the same files at the same time.

— CVS provides a flexible modules database that provides a ayenb
mapping of names to components of a larger software disioitoult
applies names to collections of directories and files. Alsirmgpm-
mand can manipulate the entire collection.

— CVS servers run on most unix variants, and clients for Wirglb\t/95,
0S/2 and VMS are also available. CVS will also operate in what
sometimes called server mode against local repositorié&indows
95/NT.

18This property was very much desired, both by us and the projecharge. Details on how

this was achieved will follow later.

Department of Computer Engineering, DJSCE 37

TDDB

6.2.3 Special Resources

The operating enviroment for both the Design & Build and tkedtition phase is
A GNU/Linux based enviroment running on x86 or x86-64 system

7 Testing

7.1 TestPlan

We indend using a variety of test methods for making surettteatorrecness of
the final product is not compromized in any way, and at the s@me making
sure that the efficiency is maintained at a decent enough ankhbie level. The
various testing methods we indend using are listed beloth, abroef description
of each one followed by how we will be using it specifically ins project.

e White Box Testing:

Also called as glass-box testing, is a design method that tse control
strusture of the procedural design to derive test casesngUsghite box
testing methods, there are test cases that

1. All independent paths within a module have been exercsddast
once.

2. All'logical decisions are exercised on their true andefglsles.

3. Allloops are executed at their boundaries and withirrtbperational
bounds.

4. Internal data structures are exercised to ensure thalitya

e Basis Path Testing:

Basis path testing is one such white box testing which iresthe following
parts

1. Flow graph- Flow graph depicts logical control flow using the graph
notations. In a flow graph each node represents one or mocegwe
ral statements. The arrows on the flow graph, called edgeskas, |
represents flow of control and are anologous to flowchartasro

2. Cyclomatic Complexity Cyclomatic complexity is a software metric
that provides a quantative measures of the logical contgleka pro-
gram. The value computed here defines the number of independe

Department of Computer Engineering, DJSCE 38

TDDB

paths in the basis set. It provides with an upper bound fontimeber
of tests that must be conducted to ensure that all staterhamsbeen
executed atleast once.

3. Deriving Test CasesFollowing steps are applied to derive the basis
set.

(a) Using the design or code as a foundation, draw a correspgn
flow graph.

(b) Determine cyclomatic complexity of resultant flow grpah

(c) Determine a basis set of linearly independent paths.

(d) Prepare test cases that will force execution of each ipathe
basis set.

4. Graph Matrices A graph matrix is a software tool that assists in basis
path testing. A grpah matrix is a square matrix whose sizqusleto
the number if nodes on the flow graph. Graph matrix can become a
powerful tool for evaluating program control structureidgrtesting.

Speaking in terms of a software engineer, white box tessreggood way
to detect the software defects. But since the shortage & taoed as a
student, we have not used white box testing for testing TDDB.

e Black Box Testing:

Black-box testing, also called behavioural testing, fesusn the functional
requirements of the software developed. Black-box testimgples to de-
rive sets of input conditions that will fully exercise allrfctional require-
ments for a program. Black-box testing ia not a alternativevhite-box

technigues. Rather a complementary approach that is ltkebyncover a
different class of errors than white-box methods.

Black-box testing attempts to find errors in the followingezpories:

incorrect or missing functions,

interface errors,

errors in data structures or external data base access,
behavior or performance errors, and

a b wnh e

initialization and termination errors.

Black-box testing ia applied during later stages of testifferent steps in
back-box testing are :

Department of Computer Engineering, DJSCE 39

TDDB

1. Graph-Based Testing Methods:

Testing here is to understand and test the objects andomethip that
connect these objects. Software testing begins with creafia graph
of important objects and their relationship and devisingrées of tests
that will cover the graph so that object and relationshipeseised and
errors are uncovered.

2. Equivalence Partitioning:

Equivalence Partitioning is a Black-box testing method thisides
the input domain of a program into classes of data from whash t
can be derived. Equivalence patrtitioning strives to definesacase
that uncovers classes of errors, thereby reducing thenataber of
test cases that must be developed. Test cases design fualeqae
partitioning is based on an evaluation of equivalence el$sr an
input condition.

3. Boundary Value Analysis:

The reason behind Boundary Value Analysis to be a populéinges
technique is that a greater number if error tend to occureabtiund-
aries of the input domain rather than the center. Boundalye\anal-
ysis leads to a selection of test cases that exercise bayudines

4. Comparison Testing:

When redundant software is developed, seperate softwgneesring
teams develop independent versions of an application usangame
specification. Each version can be tested with the same &tsttd
ensure that all provide identical output. All versions axeauted in
parallel with real-time comparision of results to ensureasistency.
These independent versions form the basis ol a black-btirggsch-
nique called comparison testing or back-to-back testing.

5. Orthogonal Array Testing:

Orthogonal array testing can be applied to problems in wthehin-
put domain is relatively small but too large to accommodataeastive
testing. The orthogonal array testing method is partitylaseful in
finding errors associated with region faults - an error aatg@ssoci-
ated with faulty logic within a software component.

e Unit Testing:

Unit testing focuses verification effort on the smallestt whisoftware de-
sign, the software component or module. Using the compelegat design
description as a guide, important control paths are testeah¢over errors

Department of Computer Engineering, DJSCE 40

TDDB

within the boundary of the module. The relative complexifytests and
uncovered errors is limited by the constrained scope eshaa for unit
testing. The unit test is white-box oriented, and the stepbmconducted
in parallel for multiple components.

The module interface is tested to ensure that informatiopgnly flows into

and out of the program unit under test. The local data stra¢suexamined
to ensure that data stored temporarily maintains its iitieduringall steps
in an algorithm’s execution. Boundary conditons are testeehsure that
module operates properly at boundary established to limiestrict pro-

cessing. All independent paths through the control strecéine exercised
to ensure that all statements in a module have been exedutkaonce.
Finally, all error handling paths are tested.

Among the more common errors in computation are

misunderstood or incorrect arithmetic precedence,
mixed mode operations,

incorrect initialization,

precision inaccuracy,

ok~ 0D PE

incorrect representation of an expression
Test cases should uncover errors such as

comparision of different data types,

incorrect locigal operators or precedence,

expectation of equality when precision error makes etyuatlikely,
incorrect comparision of variables,

improper or nonexistent loop termination,

failure to exit when divergent iteration is encounteatt)

N o gk~ wDdNRE

improperly modified loop variables

Among the potential errors that should be tested when emadlmg is
evaluated are

1. Error description is unintelligible.
2. Error noted does not correspod to error encountered.
3. Error condition causes system intervention prior torenendling.

Department of Computer Engineering, DJSCE 41

TDDB

4. Exception condition processing is incorrect.

5. Error description does not provide enough informatioadsist in the
location of the cause of the error.

Unit testing is normally considered as an adjunct to therupdtep. After
source level code has ben developed, reviewed, and verdietbfrespon-
dence to component level design, unit test cases that aalg tik uncover
errors in each of the categories. Each test case should Ipéedowith a set
of expected results

A driver or a stub software has to be developed for each usiit te most
applications a driver is nothing more than a "main prograhdttaccepts
data, passes such data to the component and prints relegatisr Stubs
serve to replace modules that subordinate to the compoadrg tested.
Drivers and stubs represents overhead. That is, both axeagefthat must
be written but that is not deliveres with the final softwaredurct. If drivers
and stubs are kept simple, actual overhead is relatively low

Integration Testing:

After each unit is tested individually, we move to integoatiesting. Even
after every unit is tested, they are combined stepwise nkeltefor errors.
This is known as integration testing. There are many ertoais tcome up
when the units are interfaced together. This errors areyhkrmbwn when
each unit is tested. The errors may be realted to the dataebetthe mod-
ules, and even the desired output may not be produced.

Integration testing is a systematic technique for consitigadhe program
structure while at the same time conducting tests to uncewers associ-
ated with interfacing. The objective is to take unit testechponents and
built a program strucutre that is required as per the design.

There is often a tendency to attempt nonincremental intiegrathat is to
construct the program using a "big bang” approach. All congmis are
combined and the entire program is tested as a whole. Theyalvesults
in set of errors. Correction of errors is very difficult. Onbe errors are
corrected new ones appear. This takes a lot of time for thgrano to be
error free.

To avoid the problems faced in the big bang approach, inanéhmtegra-
tion is used. The program is constructed and tested in smakinents,
where errors can be isolated and corrected, interfaceskahg o be tested
completely.

Following are different integration stratergies

Department of Computer Engineering, DJSCE

42

TDDB

— Top-down Integration:

Modules are integrated by moving downward through the obhter-
archy, beginning with the main control module, main progranod-
ules subordinate to the main control module are incorpdriat® the
structure in either a depth-first or breadth-first manner.
Depth-first integration would integrate all components omegor con-
trol path of the structure. Selection of a major path is soheaarbi-
trary and depends on application-specific characteridBiesadth-first
integration incorporates all components directly subwatk at each
level, moving across the structure horizontally.

The integration process is performed in a series of five steps

1. The main control module is used as a test driver and studbs ar
substituted for all components directly subordinate fbcampo-
nents directly subordinate to the main control module.

2. Depending on the integration approach selected sulsiedgtubs
are replaced one ata atime with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is reghadd
the real components.

5. Regression testing may be conducted to ensure that news err

have not been introduced. The process continues from stepl 2 u
the entire program structure is built.

Top-down stratergy sounds relatively uncomplicated, bytractice,
logistical problems can arise. The tester is left with thokeices :

1. delay many tests until stubs are replaced with actual hesdu

2. develop stubs that perform limited functions that stmteithe ac-
tual module, or

3. integrate the software from the bottom of the hierarchyargs

The first approach causes us to loose some control over pores
dence between specific tests and incorporates of specifialesdrhe
second approach is workable but not feasible as it leadghifisiant
overhead. The third approach, called as bottom-up testidigcussed
as next stratergy.

— Bottom-up Integration:

Bottom-up integration testing, as it name implies, begmsstruction
and testing with atomic modules(components at the lowest e
the program structure). Because components are integratadhe

Department of Computer Engineering, DJSCE 43

TDDB

bottom up, processing required for components subordinaagiven
level is always available and the need for stubs is elimahate

A bottom-up integration strategy may be implemented witd fii-
lowing steps:

1. Low-level components are combined into clusters th&tqrer a
specific software subfunction.

2. A driver (a control program for testing) is written to cdorate
test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving gsva
in the program structure.

As integration moves upward, the need for seperate tegrdili@ssens.
In fact, if the top two levels of program structure are intdgd top
down, the number of drivers can be reduced substantiallyraadra-
tion of clusters is greatly simplified.

e Regression Testing:

Each time a new module is added as a part of integration tgshe soft-
ware changes. These changes are reflected by changes sucbwhdata
flow paths are established, new I/O may occur, and new cdog is in-
voked. These changes may cause problems with functionptéabusly
worked flawlessly. In the context of an integration testtstayy, regression
testing is the re-execution of some subset of tests.

Successful tests result in the discovery of errors, ands®ace corrected.
Whenever software is corrected, some aspect of softwarkgcoation is
changed . Regression testing is the activity that helpssarerthat changes
do not introduce unintended behavior or additional errBegression test-
ing may be conducted manually, by re-executing a subsel &fstlcases or
using automated capture/playback tools.

The regression test suite contains three different claxfdest cases:

1. A representative sample of tests that will exercise dtinsre func-
tions.

2. Additional tests that focus on software functions thatldely to be
affected by the change.

3. Test that focus on the software components that have Ihegmged.

Department of Computer Engineering, DJSCE 44

TDDB

As integration testing proceeds, the number of regresssts tcan grow
quite large. It is impractical and inefficient to re-execewery test for every
program function once a change has occured

e System Testing:

Software is incorporated with other system elements, argiessof system
integration and validation tests are conducted. Such tetdted of exe-
cution of the software with respect to the system it is beixgcated are
known as system testing.

The potential problems faced are :

1. design error handling paths thata test all informatiomiog from
other elements of the system,

2. conduct a series of tests that stimulate bad data or othential errors
at the software interface,

3. record the results of tests to use as evidence if fingetipgi does
occur, and

4. participate in planning and design of system tests torertbiat soft-
ware is adequately tested.

System testing is actually a series of different tests wiposeary purpose
is to fully exercise the computer-based system. Although éast has a dif-
ferent purpose, all work to verify that system elements H@aen properly
integrated and perform allocated functions.

Following we will discuss the types of system tests that avethwhile for
software based systems.

— Recovery Testing:
Many computer based system must recover from faults ananesu
processing within a prescribed time. A system must be faldtrant,
that is, processing faults must not cause overall systerctiumto
cease. In other cases, a system failure must not be corneitad a
specified period of time or severe economic damage will occur

Recovery testing is a system test that forces software ftanfaivari-
ety of ways and verifies that recovery is properly perfornieecovery
can be automatic, by the system itself or by human intereantf re-
covery is automatic, the system, reinitialization, chextkppng mech-
anisms, data recovery and restart are evaluated for coesxtIf it re-
quires human intervention, MTTR is evaluated to determihetiver
it is within acceptable limits.

Department of Computer Engineering, DJSCE 45

TDDB

— Security Testing:
Security testing attempts to verify that protection medcsias built
into system will, in fact, protect it from improper penetoat. The sys-
tem's security must,of course be tested for invulnerafiitam frontal
attack but must also be tested for invulnerability from flankear at-
tack.
During security testing, the tester plays the role of theviddial who
desire to penetrate the system. The tester may attempt tira@gss-
words through external clerical means; may attack the systéh
custom software designed to breakdown any defenses thatiesan
constructed; may overwhelm the system, thereby denyingcssrto
others; may purposely cause system errors, hoping to péeetiring
recovery; may browse through insecure data, hoping to fiadely to
system entry.
Given enough time and resources, good security testingiltiithately
penetrate a system. The role of the system designer is to peade
tration cost more than the value of information that will hetaoned.

— Stress Testing:

Stress testing executes a system in a manner that demaodscess
in abnormal quantity, frequency, or volume. For example,

1. Special tests may be designed that generate ten intepeapsec-
ond, when one or two is the average rate.

2. Input data rates may be increased by an order of magnitude t
determane how input functions will respond.

3. Test cases thet require maximum memory or other resoarees
executed.

4. Test cases that may cause thrashing in a virtual opersystgm
are designed.

5. Test cases that may cause excessive hunting for diskergsiata
are created. Essentially, the tester attempts to breakrtigggm.

A variation of stress testing is a technique called sensitigsting. In
some situation, a very small range of data contained witterbbunds

of valid data for a program may cause extreme and even emgeno
processing or profound performance degradation. Seitgitesting
attempts to uncover data combinations within valid inpassks that
may cause instability or improper processing.

— Performance Testing:

Department of Computer Engineering, DJSCE 46

TDDB

For real-time and embedded systems, software that provedgsred

function but does not conform to performance requirementsnac-
ceptable. Performance testing is designed to test theimangerfor-

mance of software within the context of an integrated systé&rar-

formance testing occurs throughout all steps in testinggs®s. Even
at the unit level, the performance of an individual moduley/rba as-
sessed. However, it is not until all system elements arg findégrated
that the true performance of a system can be ascertained.

Performance tests are often coupled with stress testinguandlly
require both hardware and software instrumentation. B#tis often
necessary to measure reource utilization in an exactirfydas By
instrumenting a system, the tester can uncover situattaatde¢ad to
degradation and possible system failure.

7.2 Test Cases & Methods Used

We have used a judicious use of the testing techniques desdabove for testing

the working correctness & efficiency aspects of TDDB.

Black Box Testing & Unit Testingvere used to test each of the individual

components which can operate in isolation. These include:

e Lock Manager

e Buffer Cache

¢ File Interface

e Bitmap Lock

e Dirty Map

e Table Lock

e MT-Allocator

e MDS5 Encryption

e External Parallel Merge Sort
e Threading Interface
e Socket Interface

e Primitive Data Types

Department of Computer Engineering, DJSCE

47

TDDB

e Disk Debugger

For the other modules which depended on the other modules teokking,
we usedintegration Testingvhere by we had assemble the whole system, and

then begin testing, because of coupling between the ingitichodules. These
include:

e SQL Parser
e Console Client
e Server

e SQL Execution Engine

Regression Testingelped us discover bugs which were introduced into the
code tree because of the addition of a new feature, or becégsene other bug-
fix.

8 Maintenance

8.1 Installation

This is how you can install & run TDDB for the first time.
TDDB is broken up into a Server & a Client application. Thddwling steps
need to be carried out in order to compile & run TDDB:

1. Compile TDDB: Run 'scons opt=1 release=1" from within tledb/ direc-
tory.

2. Set up the initial DB file. This must be at least 256MB in sikhis can be
done using 'dd’ as such:
'dd if=/dev/zero of=dhstub.dat bs=1048576 count=400’
This will create a DB file of size 400MB. You can also use any RAI8k
space or partition for the DB file.

3. Format the DB file for initial use:
".Isrc/client/server —db-file-name=diiub.dat —create-db’
Will format the file for subsequent use.

Department of Computer Engineering, DJSCE 48

TDDB

4. Start the TDDB server:
".Isrc/client/server —db-file-name=ditub.dat’
This will start the TDDB server, and will bring you to the ADMIprompt
where you can type 'help’ to get the list of commands supporte

5. Help on the server can be obtained using:
".Isrc/client/server —help’

6. Start the console based client:
".Isrc/client/consoleclient’
As usual add a '—help’ for help on the console client.

7. Congratulations! If you got to this point, and the consdient connected
to the TDDB server, then you can start executing SQL queries.

9 Conclusion & Future Scope

This project has been a great learning experience for usyanidave gotten to
know many practical design & implementation level aspetteal systems. The
experience co-corination & working in groups with peopledted at geographi-
cally distant locations has been something new, excitingj@yable for us. Need-
less to say, we have learnta from it.

As far as the future scope of this project, there is lots thatlwe done. There
are many features & optimizations that can be implementedndntion some:

e Nested Query Support

e Support for non-field projections

e Support forAggregatgunction in SQL

e Support for Indexes

e Query Optimization

e Support for Query Time-Out

e Process management administrative functions
e Process priority admistration

e Support for Users

e Security features such as database/table access rightsavruaer basis.

Department of Computer Engineering, DJSCE 49

TDDB

As with any project, there are some limitations th&DB has. Here are some
major ones:

e The INTEGER/INT data type doesn’t support negative numbégs, only
non-negative numbers can be used. Furthermore, decregemtilNT be-
yond O results in the INT getting the value NULL.

e You can view the list of tables, and the commands used toectkam by se-
lecting from the table 'global.tabtab’ as: 'SELECT * FROMogkl.tabtab;’.
This command is treated as a DDL statement for compatilgi@gons.

e DDL Commands are also Transaction oriented!! Suppose yduATE or
DROP a Table by mistake, you can revert your action by doin@alR
BACK. However, if you want to make the changes permanantQGM-
MIT.

e You can’t Mix DML & DDL commands in a single Transaction. Suse
you CREATE a table, you need to COMMIT or ROLLBACK before you
issue a DML Command. You may however, issue another DDL Camdma
in the same Transaction such as creating or dropping antathler. Don’t
try to CREATE & DROP the same table in the same Transactiongho

e Maximum Row Size = 8100 Bytes. That is the Sum of all data typeise
Row should be not greater than 8100 Bytes. The sizes of theusadata
types for this calculation are mentioned in Table 2 below:

Data Type Size In Bytes

INTEGER 8
CHAR(N) N + 4

VARCHAR(N) 32

CLOB 16

Table 2: Various data types and their sizes on disk

e There is currently no support for indices, and so each querygssed needs
to do a full table scan. Even JOINs are performed usingésted loop join
algorithm. We are working on getting more efficient JOIN aitfons which
don’t need Indices or create the indices dynamically in@lao that JOIN
processing can be made faster.

e There is currently no support for nested queries.

Department of Computer Engineering, DJSCE 50

TDDB

e The type checking of the parser is quite weak. That needs fixdd For
example, certain type conversions are performed silegttii®engine with-
out the user ever being notified about them. If the user passtesg in case
of an integer, then the string is parsed as an int, and thédwsdigit charac-
ters(if any) are parsed as the integer. For the reversettesiateger parsed
as the string is entered as a string with the representatithre anteger.

Department of Computer Engineering, DJSCE 51

TDDB

List of Figures

1 Relationship between the Master & the Data Storage Nodes.. . 7

2 Relationship between a single TDDB Master & Clients 8

3 Relationship between multiple TDDB Masters & Clients10

4 The Data Flow Diagram showing how a Query is processed . . .9. 2
5 TimeChart: Week1-10 31
6 TimeChart: Week 11-20 32
7 TimeChart: Week21-30 32

List of Tables

1 Symbolsused 25
2 \Various data types and their sizesondisk 50

Department of Computer Engineering, DJSCE 52

TDDB

References

[PatXX] Some Considerations of Locking to Prevent PhantdPadgrick O’Neil,
Alan Fekete, Elizabeth O’Neill, and Dimitrios Liarokapis

[Tob94] The Design and Performance Evaluation of a Lock Mandor a
memory-Resident Database System, Tobin. J. Lehman, VibbiteG
mukkala, January 14, 1994

[Don81] A History and Evaluation of System R, Donald D. Chamiin, Thomas
G. Price, Morton M. Astrahan, Franco Putzolu, Michael W.d8jen, Patri-
cia Griffiths Selinger, James N. Gray, Mario Schkolnick, \Warkk King,
Donald R. Slutz, Bruce G. Lindsay, Irving L. Traiger, Rayrdohorie,
Bradford W. Wade, James W. Mehl, Robert A. Yost, October 1981

[Sto80] Retrospection on a Database System, Michael Staket) June 1980

[Tan87] Non-Stop SQL, A Distributed High-performance, hhgvailbility Im-
plementation of SQL, Tandem Database Group, April 1987

[And84] Robustness to crash in a Distributed Database: A Sluared-Memory
Multi-Processor Approach, Andrea Borr, Tandem DatabasemrSeptem-
ber 1984

[Avi96] Strategic Directions in Database Systems—Bregiut of the Box, Avi
Silberschatz, Stan Zdonil et al., December 1996

[Avi95] Database Research: Achievements and Opportgiiie the 21st Cen-
tury, Avi Silberschatz, Michael Stonebraker, Jeff Ullmaditors, May
1995

[Sto91] The Postgres Next-Generation Database Managefystem, Michael
Stonebraker, Greg Kemnitz, October 1991

[Dav92] Parallel Database Systems: The Future of High Pedace Database
Processing, David J. DeWitt, Jim Gray, January 1992

[Hon85] An Evaluation of Buffer Management Strategies fetaional Database
Systems, Hong-Tai Chou, David J. Dewitt

[Sto87] The Design of the Postgres Storage System, MichtaakeBraker

[Jim96] The Dangers of Replication and a Solution, Jim Giagt Helland,
Patrick O’Neil, Dennis Shasha

Department of Computer Engineering, DJSCE 53

TDDB

[DimXX] On Serializability of Multidatabase Transactioifirough Forced Lo-
cal Conflicts, Dimitrios Georgakopoulos and Marek Rusinkoz, Amit
Sheth

[Knu98] Donald Knuth, The Art of Computer Programming Voles8, 24 Edi-
tion, Pearson Education, 2004

[Hec04] Hector Garcia-Molina, Jeffrey D. Ullman, Jenniiéidom, Database
Systems: The Complete Book! Edition, Pearson Education, 2004

[Ram04] Ramez Elmasri, Shamkant B. Navathe, FundamerftBlatabase Sys-
tems, 4" Edition, Pearson Education, 2004

[Sil02] Silberschatz, Korth, Sudarshan, Database Systentépts4* Edition,
Mc Graw Hill, 2002

Department of Computer Engineering, DJSCE

54

