
Acknowledgements

We would like to thank our project guide, Prof. Jayant Umale &co-guide Prof.
Rashmi Gugnani who have guided us throughtout the making of this project. Prof.
Neepa Shah, our project co-ordinator has been very helpful and supportive of our
efforts.

We would like to specially thank The Head of the Department ofComputer
Engineering, Prof. Deshpande, for granting approval for this project as a BE
project. The Principle, DJ Sanghvi College of Engineering,Dr. DJ Shah also
merits a mention, because he has been generous enough to grant permission for
using the college resources for the project efforts till date.

Our partners in crime who are responsible for working on the remaining 2
modules have been a pleasure and lots of fun to work with, Sandy and Pascii with
their scrutiny filled vision have spotted many a mistake thatwe have made during
the course of designing & implementing the data storage engine, and hope they
will continue to. Anu, Shetty & Prakash have been a pleasure to work with, and
we hope we can continue like this even in the future.

Mr. Sridhar Ganti’s help has also been much appreciated since he was the one
who first made us realize the basic concept of the project, andthe complexity we
were about to set foot to. He was the one to suggest separatingthe distribution &
replication part from the rest of the project, since it is logically independent from
the rest of the Data Storage Engine.

Last but not the least, we would like to thank all our friends &family members
who have supported us throughout this ordeal, and have backed our effort and have
had faith in us.

Contents

1 Existing system 5

2 Problem Definition with scope of the project 5
2.1 Problem Definition . 5
2.2 Scope of the Project . 6

3 Proposed Solution 6
3.1 Distribution . 7

3.1.1 Fragmentation . 9
3.1.2 Replication . 9

3.2 DDL Commit . 11

4 Requirement Analysis 11
4.1 Why distributed database? . 11
4.2 Why is Replication needed? . 12
4.3 Independence from one single machine 12
4.4 ChoosingSQL . 13
4.5 ChoosingC++ as the language of implementation 14
4.6 ChoosingGNU/LINUX . 14

5 Project Design 15
5.1 Proposed Architcture . 15

5.1.1 Unix File Abstraction . 15
5.1.2 Buffer Cache . 15
5.1.3 Bitmap Lock Manager 16
5.1.4 Dirty Page Manager . 17
5.1.5 Redo Logger . 18
5.1.6 Table Lock manager . 20
5.1.7 Division of Disk Space 20
5.1.8 Indexes . 21
5.1.9 Join Processing . 23
5.1.10 Security Issues . 24
5.1.11 Multi-threaded Memory Allocator 26
5.1.12 SQL processing Engine 28

5.2 Data Flow Diagram . 29

6 Implementation 31
6.1 Schedule . 31

6.1.1 Timeline Chart . 31
6.2 Project Resources . 33

6.2.1 Hardware . 33
6.2.2 Software . 33
6.2.3 Special Resources . 38

7 Testing 38
7.1 Test Plan . 38
7.2 Test Cases & Methods Used . 47

8 Maintenance 48
8.1 Installation . 48

9 Conclusion & Future Scope 49

Abstract

There are many relational databases in the market, both commercial and

open source. However, we have identified what we believe to bemajor draw-

backs in their architectures. Having done this, we propose to build a new

relational database system, that will, from the ground-up,address these de-

ficiencies. Our group will implement a Storage Engine for such a database.

We are implementing storage engine for a larger DistributedDatabase

project. Though our project is independent in itself, it will be meaningless if

the perspective of the whole Distributed Database is not taken into consid-

eration. Therefore, we will, both in this report, and the final thesis, refer to

TDDB (TheDistributedDataBase) as a whole.

TDDB

1 Existing system

We realize that existing systems do not have provision for automatic distribution
of data, and support for amalgamating that distributed dataautomatically on issue
of a SELECT statement.

They merely support full and partial replication which doeshave it’s advan-
tages and disadvantages. There are a few commercially available systems that do
have somemanualsupport for distribution of data but nothing that does this au-
tomatically. This means that the user has to be aware of the site(s) containing the
tables, or fragments of the tables. Another limitation of replication is that there
is a limit beyond which a system can scale-up vertically1 so we need to devise
means by which we can scale-out horizontally.2

2 Problem Definition with scope of the project

2.1 Problem Definition

Current commercial implementations allow users to scale vertically by means of
adding more hardware, or implementing replication by meansof replicated copies
of the data. However, keeping in mind the current trends in Data management
including Data Warehousing, and Data Mining[which are dataintensive opera-
tions], we need a solution which allows the data to scale horizontally. Scaling
horizontally simply means distributing the data on variousmachines, and hence
distributing the computational as well as storage burden onthe various machines.

1Vertical scale-up means scaling-up by adding more hardware. In fact, Scale-up servers are

large SMP systems with more than four CPUs and one instance ofthe operating system (OS) that

covers all processors, memory, and I/O components. Generally, these resources are housed within

a single chassis or ”box,” and resources are added to the box via system boards. Memory is shared

in SMP systems so all processor and I/O connections have equal access to all memory. These

vertical systems are also ”cache coherent,” meaning information is maintained on location of all

data regardless of cache or memory location.
2The alternative to vertical scaling is horizontal scaling,which works by networking racks or

clusters of volume servers. Typically, scale-out systems are linked together via standard network

interconnects such as Fast Ethernet, Gigabit Ethernet (GBE), and InfiniBand (IB). Resources are

contained within ”nodes” — small servers with only one to four CPUs. Each node has its own

processor, memory, and operating system. Resources are added by putting more nodes on the rack,

not by adding more resources within a node. Memory in a horizontal architecture is distributed,

meaning it’s typically accessed by each node’s CPU and isn’tshared across the system.

Department of Computer Engineering, DJSCE 5

TDDB

Another aspect with respect to current implementations is the method of enforcing
the ACID properties on the database, and the efficiency concerns which may not
be quite up to the mark.

Hence, we would like to develop a system that allows the data and compu-
tational overhead to be scaled horizontally by means of distribution. And re-
implementing the storage engine to try and iron out the defects mentioned above.

2.2 Scope of the Project

This project would be limited to data storage and retrieval,and may be used for
Data Warehousing and Mining applications too. However, expecting utmost effi-
ciency from it would not be wise, because it has many integrity constraints to take
care of while processing the data. Hence, data correctness,and preserving the
integrity of the data and at the same time ensuring reasonable efficiency would be
the primary goals of this venture.

3 Proposed Solution

The solution to the above problems lies in the automatic distribution of data, which
would allow:

1. Dynamic selection of a query plan based on which machines contain the
required tuples,

2. Distributed Join, and Select.

3. Completely automatic distribution[vertical and horizontal fragmentation] of
the data[tuples]

A distributed database consists of features like data distribution, data replica-
tion and options for choosing Storage Nodes for these activities. However, there
are no commercially available databases which have features which allow auto-
matic distribution of data and automatic Distributed Queryexecution. None have
the provision for automatic fragmentation. In a non-distributed database, the fail-
ure of any one site may lead to the failure of the whole database, which would
lead to the global unavailability of data.

Many databases are overloaded because of excess data storedin them. So, if
one site[the server] goes down all clients suffer from unavailability of data.

We are trying to implement a distributed database system to counter the above
mentioned problems & shortcomings. There will be many data storage nodes and

Department of Computer Engineering, DJSCE 6

TDDB

single server site. These data storage nodes are controlledby the single server
site. May it be any task, the server handles it by making decisions on which data
storage node to be used.

3.1 Distribution

The primary function of TDDB is the distribution of the data as required. For this
purpose we will be using Replication & Fragmentation. Both of this can be used
together so as to store the data as required and as convenientfor the database to
act on.

Figure 1: Relationship between the Master & the Data StorageNodes

Figure 1 shows the relationship between theMaster and theData Storage
Nodesin TDDB. A singleMasteris responsible for manyData Storage Nodes, and
directly controls them. The interface between them is that of SQL, so any other
database can seemlesly be plugged in place of theTDDB Data Storage Engine
on theData Storage Nodes, thus making it a kind ofHeterogeneous Distributed
Database System.

The Master in figure 1 can be one responsible for eitherDistributionor Repli-
cation. The structure and logical structure remains same for both.This is the

Department of Computer Engineering, DJSCE 7

TDDB

reason why we can combine both these techniques[Distribution & Replication]
in man possible ways. For eg. theData Storage Nodecan actually be aMaster
which is connected to many otherData Storage Nodes.

Master

Clients

Data Storage Nodes

Figure 2: Relationship between a single TDDB Master & Clients

Figure 2 shows the relationship between a singleTDDB Master& Clients.
Here, there is just a singleTDDB Masterwhich is responsible for all Transaction
processing. The system is pretty straight forward, and works as it there was a
singlelocal DBMSrunning at theMaster site.

Advantages:

1. All the data in the database is distributed by proper means. The data is
distributed evenly on all theData Storage nodes. So none of the sites suffers
from overloading of data, or lack of sufficient data.3

2. Consider only one site executing a query. If a single machine is searching
entire database on its own it would take a considerable anount of time. Now
consitern number of data storage nodes in a database. Now the work load

3This is also knows as dataskew. We have assumedRound-robindistribution of data in this

discussion of distributed databases.

Department of Computer Engineering, DJSCE 8

TDDB

is evenly distributed among then sites. So the Query processing becomes
approximatelyn times faster.

Disadvantages:

1. The only disadvantage in Distribution is that managing all the above pro-
cesses is quite complex. So maitaining the consistency of the database is
also quite complex.

3.1.1 Fragmentation

Fragmentation is a process in which the data is divided into parts as required by
the database. It depends on what part of data is to be stored atwhat site.

3.1.2 Replication

Replication is the process of making copies of the data in thedatabase. These
copies maybe stored on all or on some server sites as requitred by the user. Also
the number of copies of the data may depend on the importance of the data. Data
that is used more frequently, or is more critical in nature may be replicated at
all sites, while other data may be replicated at just a few sites. According to the
importance of the data, replication is done.

Figure 3 shows the relationship between multipleTDDB Masters& Clients.
Here, there are 2Mastersto which eachClient is connected. AClient can request
any of theMastersit is connected to to provide it with results of a Query, and can
also fireInsertandUpdatecommands atanyof theMasters. It is the responsibility
of the Mastersto perform synchronization between themselves, and ensirethe
ACID properties of the data.

Advantages:

1. Full replication gives high availabilty of data. Since data is copied at all the
server sites, data is available everywhere. Now even if any of the sites are
down or loose all the data, it can be made available from the other sites.

2. A query failure in a replicated database is of a very low probability. Even
if one site is down, other sites can fulfill the request. This gives the data
protection from system failures.

3. At a time many non-blocking concurrent reads can be performed on the
same data. This results in no loss of time. Instead of waitingfor a site
performing a read action, another site can be queried, wherethe data has
been replicated and there is no activity being performed.

Department of Computer Engineering, DJSCE 9

TDDB

Figure 3: Relationship between multiple TDDB Masters & Clients

4. Also the geographical distance between the sites makes the query process-
ing slow. A site requesting some data from a geographically distant site
would slow down the data transfer speed. So, it can be made to approach a
nearby site. This lessens the time for transfer of data. So, the query can be
executed faster.

Disadvantages:

1. To update a single copy of data all the copies on the other site need to be up-
dated. It means many copies has to be updated at a single time.This results
in lot of latency, which results in the system getting generally unresponsive
and sluggish.

2. Updation of a copy requires it to be updated it on all sites.If any of the
site fails to update it is means no other site can update the copies, even
though other sites may be ready for update. So it means failure in updation
of the data, which ultimately boils down to the failure of thetransacion as a
whole.4

4We have assumed here that we are using a protocol in which if any one site fails to perform

Department of Computer Engineering, DJSCE 10

TDDB

3.2 DDL Commit

Data-Definition Language also known asDDL is a special language that is used to
define a database schema using a set of data definitions.DDL provides commands
for defining relational schemas, deleting relations, and also modifying relation
schemas. This meansDDL statements are the ones that provide the features for
constructing a database.

In a distributed database,DDL statements are given to all sites to do the work
of defining the schemas. The effect is seen only on the site where the statements
are received and executed. Other sites, which didn’t receive the statements, remain
unaffected. Later when theDML5 statements to input data or change data on the
sites are given, the sites which didn’t receive the previousDDL statement(s) return
an error.

To avoid the above problem from occurring, commit forDDL statements is
implemented, as is done forDML statements.COMMIT is a statement which al-
lows a Transactionto be executed atomically. If all the sites commit the data
successfully, then the commit statement is said to have succeeded. On the other
hand, even if one site fails, then the commit is said to have failed.

A similar concept is developed to theDDL statements. This is required for use
by the 2-phase commit protocol. We call this theDDLCOMMIT statement.

4 Requirement Analysis

4.1 Why distributed database?

Distributed database carries out its work using fragmentation and replication. In
normal databases, if any server is not working it may make a task to be carried
out on entire database impossible to perform due to it’s unavailability. Also the
databases are overloaded due to unnessecary reasons. Now since the data is dis-
tributed, there are manyData Storage Nodesto perform this work. So overloading
of a particular site can be avoided.

The main purpose of distributed databases is distribution of the data as re-
quired by the user.6. Replication and Fragmentation are used for this purpose.

the update, the whole transaction is deemed to have failed. However, this is not always the case,

and better protocols such as theMajority Protocolemploy bettwer methods, and allow the trans-

action to continue as long as a majority of the sistes are up. These are however more complex to

implement.
5DML stands for Data Manipulation Language
6In our case,TDDB itself can make this decision on its own.

Department of Computer Engineering, DJSCE 11

TDDB

Also, a combination of both can be used with good results. This will store the
data as required and handling with it will be convenient.

The need for distributed databases is going to increase in the future. This is
because a lot of data is being digitized or being stored in a digital form these days
because:

• It is cheaper to store data this way

• It is easier to Search the data

• It is more convenient to manage this data

• It takes up lesser space as compared to voluminous paper files

• Is a more environmentally friendly option

A part of this also arises from the fact that many different kinds of computing
devices will be on the network. As mentioned earlier, in distributed database none
of the site will suffer from overloading and the query execution will also speed
up.

4.2 Why is Replication needed?

Replication is the process of replicating copies of the datain the database. These
copies may be stored as and how wished by the server or the user. Replication
will also depended on the importance of the data. The more is useful data, more
are the sites at which it will be replicated. Regional based data maybe stored only
at the site required. Thus replication depends on the data and also the choice of
the user.

If full replication is done, it gives high availabilty of data. Even if any of the
sites are down or any sites loose all the data, it will be available from any other
site.

A query failure in a replicated database has a very low probability. On failure
of one site the data request can be fulfilled by another site.

Multiple reads can be performed on same data without loss of time. If there is
a read request at a certain site, and a read is being performedat that site, then the
request can be transferred to another site.

4.3 Independence from one single machine

In a distributed database, all the data is distributed on many machines, that is the
Data Storage Nodes. TheseData Storage Nodesare controlled by the a server,

Department of Computer Engineering, DJSCE 12

TDDB

which is in charge for any and all activities taking place at theseData Storage
Nodes. The server controls process ranging from construction of database schema
to the execution of queries and returning the output. The server can request any of
theData Storage Nodesfor data that it may require. But it does this on the basis
which results in a low cost of executing the query.

Thus a distributed database is independent of a single machine, since data is
distributed all over the place.

4.4 ChoosingSQL

SQL is referred to asquery language. But it can do just more than just a query
language that queries a database. It can define the structureof the data, modify
data in the database and also specify security constraints.

SQL is the most influential commercialy marketed query language. SQL uses
a combination of relational-algebra and relational-calculus constructs.

SQL has several parts which are very useful to construct a database.

• Data-definition languageDDL

• Data-manipulation languageDML

• View definition

• Transaction control

• Integrity

In this project, we will be using SQL as the interface for communication to and
from the database. This is because SQL is one of the most widely used language
in databases. Almost all people working on databases are well acquainted with
the use of SQL. Since project will be implementing SQL, no additional training
will be required to work on our system language.

SQL uses realtional-algebra. It is generally considered good practice to create
relational databases. Relational querying is easy to understand and implement.

Due to all these features of our system, people and institutions working on
our database system won’t face problems while shifting/migrating to our system.
Thus shifting from the older system to our system won’t be hard and will be a
seamless transistion for them. This will reduce the initialtraining cost, and also
no time will be wasted training the employees after the transition is made.

Department of Computer Engineering, DJSCE 13

TDDB

4.5 ChoosingC++ as the language of implementation

C++ is one of the most commonly used language for systems programming, and
produces High Quality code. C++ is a language which is neither a low level
language nor a high level language. C++ has the low level power of C, but at the
same time it allows us to abstract our ideas similar to other high level languages.

There are many inbuilt functions and templates which can be used easily. Also
defining and using of new functions is easy. There are in-built data-types and also
provides us with the facility of creating user-defined data-types. So data-types and
the functions can be used as required and needed by the user.

C++ supportsgeneric programmingby means of a feature calledtemplates.
Templatesallow you to write code which is independent of the underlying data
type you are using, and allows you to codedata structures and algoritmssuch as
sorting, searching, etc. . .which are data-type independent.

Finally, the icing on the cake is theSTL[Standard Template Library]which
C++ is well known for. TheSTL is a collection of highly efficient pre-coded
templates, which allow you to accomplish routine tasks veryeasily. TheC++
STLcomprises a large number of data structures and algorithms which are used
very commonly.

4.6 ChoosingGNU/LINUX

GNU/Linux is a very stable Operating System. It works efficiently on many kind
of machines, be it one with older or newer hardware configuration. Crashes on
linux are rare. Generally most of the servers and machines used for high produc-
tivity or tough tasks work on linux.

GNU/Linux quite is secure in comparision with other Operating Systems.
Since the servers and other clients are going to store important data, it is nec-
essary to provide a secure environment. The system files which are only visible in
root user[administrator of the system]can’t be modified by normal users. So this
ensures Linux provides security to important files, data, documentsm and devices.

Also since GNU/Linux is freely and readily available, it would be easy for
anyone to procure a copy. This does not increase the cost of the set-up.

Department of Computer Engineering, DJSCE 14

TDDB

5 Project Design

5.1 Proposed Architcture

The Data Storage Engine which we will be working on will have adesign similar
to that described below:

5.1.1 Unix File Abstraction

The lowest Level of the Data Storage Engine would be the UNIX File Abstraction
layer. This Layer provides a device independent interface to access just about any
device on the system using a simpleopen()system call. You can read from &
write to this file using theread() & write()system calls.

The database engine would operate on just a single file, whichcould be just
Raw disk space for fast access, thus avoiding the OS File System Layer. This
would mean that we can format this Raw disk space in any way we wish, and
make the data storage/retrieval as efficient as we wish to.

5.1.2 Buffer Cache

The Buffer Cache is aPage Cache7 which stores all theMost Recently & Fre-
quentlyused pages in memory. The algorithm used is a mix of both thesealgo-
rithms, and is implemented using logic similar to the2-handed clock algorithm
for page eviction.

The buffer cache will be constructed as a collection of hash-tables with chain-
ing for handling overflows with each bucket provided by it’s own mutex.

The Page Evicition function will be called only when all memory locations
are exhausted and there is no more room for housing new pages in memory.

The details of the page replacement algorithm are as follows:

• Every time the page is referenced, the 13-bit counter is incremented by one.

• The daemon thread for a particular pagecache is run only if the number of
free pages for that pagecache is less than 10% of the total number of pages
on that pagecache.

• In the daemon thread, the value pageage is checked against newlb. If it is
< new lb, then newlb is set to the new value, else, newlb is left untouched.

7A Page is defined by the TDDBPAGE SIZE macro, and is typically 8kB in size. A Page is

the smallest unit of data which will be read off the disk at oneshot.

Department of Computer Engineering, DJSCE 15

TDDB

• In the daemon thread, the age for every page which has an age count of≥
1% of the agemax is decremented by one whenever the daemon thread runs
for that particular pagecache and encounters that buffer.

• While referencing a page, if the age for a page reaches agemax, it is made
age max

2
.

• New pages entering the system are given an age of agemin.

• The pages to be evicted are evicted not by the2nd pass of the clock but by
the thread itself which finds that the number of pages has dropped below
min free. It then tries to free maxfree pages.

• The pages to be selected are those which have an age< lb age+1. If in the
first pass, not enough pages can be evicted, then the alsorithm makes another
pass, but this time uses(lb age + 2) ∗ 2 as the quantity to check against. If
this too fails, then, the the quantity is set toage max

2
, and if this too fails,

then pages are evicted sequentially as and when they are encountered.

5.1.3 Bitmap Lock Manager

The Bitmap Lock Manageris a Page level bitmap lock manager. It has 1-bit
reserved for ech page in the database. This ensures reasonable space efficiency of
the implementation. All dictionary operations such as:

• Locking a Page8

• Unlocking a Page

• Checking if a page is locked

take constant time.
For a database of size400GB, assuming the page granularity9 to be8kB, and

overhead per page to be 1-bit, the total space overhead is:400GB
8kB

= 52428800bits
= 52428800

8
bytes

= 6553600bytes

= 6.25MB

In terms of percentage, this is an overhead of 0.0000152588%which is quite
negligible.

8Locking a page make take more time if that page has already been locked by some other

Transaction, because the current page has to then wait for that Transaction to unlock the page.
9also called as Page Size

Department of Computer Engineering, DJSCE 16

TDDB

A Transaction Locks a Page using the bit-map Lock when it isreading from
or writing to it. This is done to ensure that no other transaction can read from or
write to that page while the current Transaction is reading from or writing to it. It
also ensures that concurrent transactions do not modify thepage at the same time.
The reason we have this lock in place while reading from OR writing to the page
is that certainIsolation Levelssuch asDirty Readcan read from the table while it
is in the process of being modified, so such transactionsmustlock the page before
reading from it.

5.1.4 Dirty Page Manager

TheDirty Page Manageris similar in structure to theBitmap Lock Managerand
has similar space & time complexity, but the reason for it’s existence is entirely
different from that of theBitmap Lock Manager.

TheDirty Page Manageris used to mark pages asDirty. A page is called as
Dirty when it has been modified by a Transaction, but it has not been written back
to disk. When a page isdirty, it may be:

• Entirely in memory

• Partially in memory, and partially on the Redo Log

• Fully on the Redo Log

Thus, it would be an error for another Transaction to read data off that page,
because it would undoubtedly containstaledata.

Another reason for marking pages asdirty is thatControl Informationin the
header needs to be updated, and Transactions can not afford to readstale Control
Informationfrom these page headers. If such a situation occurs, then it may lead
to problems such as Transactions using the same free space towrite user data.

So, from the definition of adirty page, it follows clearly that only the origi-
nating transaction10 can read from or write to that page again. Other transactions
must thusalways querythe Dirty Page Managerto check if the page they are
trying to read from or write to has been marked as dirty by an earlier transaction.
If so, then, they can not rely on the information they read from that page. These
transaction can then either:

• Try to read data from another page, or

• Wait for the current page to be marked asclean

10Orignating Transactionhere means that one that marked the page as dirty.

Department of Computer Engineering, DJSCE 17

TDDB

5.1.5 Redo Logger

How Consistency is to be maintained?
The value of the attributes when being updated, care is takenthat if update

doesn’t take place then the old values are not lost and replaced in the place of the
unchanged attributes. This is the property of consistency of a Database.

There are two ways to implement consistency.

1. Undo

2. Redo

1. Undo:
In this method, the attribute values which have to be changed, are stored
in a temporary location before being changed. After storingthe values in
the location, the new values are written in the location of the attributes. If
the process of writing of new values takes place completely,then the old
values stored are completely discarded. Or else if they are not written in
the attribute location, then the old values from the temporary location are
copied back to their respective location. This undo method is used where
success rate of transaction is high.

Since the system roll backs to its old state if any of the transaction did not
succeed, this method is calledUndo. Also the temporary location used to
store the attribute values is called asUndo Log.

Advantages:

• Undo method is used when most the transactions in the database suc-
ceded.

Disadvantages:

• During updating the attribute values, other concurrent readers have to
refer to the temporary location. This may be time consuming,since an
extra level of indeirection is needed.

2. Redo:
In this method the attribute values which have to be changed are stored
in a temporary location before being changed. After storingthe values in
the location, the new values are written in the location of the attributes. If
the process of writing of new values takes place completely,then the new

Department of Computer Engineering, DJSCE 18

TDDB

values stored are completely discarded. Or else if they are not written in the
attribute location, then the new values from the temporary location are still
present in the temporary location. This redo method is used where success
rate of transaction is low. That is the transactions tend to fail.

Since the system proceeds to its new state if the transactionsuceeds the
method is calledRedo. Also the temporary location used to store the at-
tribute values can be called asRedo Log.

Advantages:

• Redo method is used when most the transactions in the database fail.

• During updating the attribute values, concurrent readers can refer to
the original location on disk of the attributes. This means that concur-
rent readers do not suffer a performance hit when another transaction
writes to data in the tables.

Disadvantages:

• The redo process may be time consuming.

• The transaction which writes data to the tables must now refer to the
Undo Logto read the newuncommittedvalues in the table. This means
an extra level of indirection is needed, which slows things down a bit
for the transaction which made the changes.

Comparision of Undo and Redo
Generally theredo methodis preferred over theundo method. This is because

the new attribute values are stored in final database only if the transaction suc-
ceeded. Whereas in theundo methodwhatever may be the fate of transaction,
new attribute values are written. This leads to complication w.r.t multiple trans-
actions reading off from the same table. If theUndo methodis being used, then
the concurrent transactions need to read the un-committed values from the undo-
log. This inderection can be the reason of some inefficiency while accessing the
database. Also, this method increases the internal complexity of the database im-
plementation. However, if theRedomethod is being used, we need not be worried
about any such problems, because new values are written to the database ONLY
if the transaction succeeded.

TDDBuses theRedo Methodto ensure consistency of data in the database, and
for this purpose, a special region on disk called as theLogging Segmentis reserved
to house theRedo Log. When any transaction wishes to modify any data, it is
written out to theRedo Log, and then the data in theRedo Logis played. If it were
to fail, then it can be replayed when the system is re-started. Thus, consistency of
data is ensureed.

Department of Computer Engineering, DJSCE 19

TDDB

5.1.6 Table Lock manager

TheTable Lock manageris responsible for performing locking on the tables11 and
thus ensuring consistency of data in the database.

There are currently 5 modes in which a table can be locked. They are:

1. Read Mode:A table is locked by a transaction in this mode if it wishes to
readdata from it.

2. Insert Mode:A table is locked by a transaction in this mode if it wishes to
indert data into it.

3. Update Mode:A table is locked by a transaction in this mode if it wishes to
updatedata in it.Updationalso includesdeletionof data from the tables.

4. Serializable Mode:A table is locked by a transaction in this mode if it
wishes to lock the table inSerializablemode. This is a special mode in
which otherSerializabletransaction are not allowed to performdirty or
phantom readsfrom the table, and must wait for the locking transaction12 to
unlock the table. This mode corresponds directly to theSerializable Mode
mentioned in theSQL92 Standard.

5. Critical Mode: A table which is being modified[data is being written to the
database from theRedo Log] has to be locked in this mode before any mod-
ification is possible. This mode ensures thatno othertransaction can write
to the table while some other transaction is writing to it. Itthus enforces
mutual exclusionin the true sense.

5.1.7 Division of Disk Space

How is Raw disk space to formatted for use by TDDB?
TDDB creates managable units of disk space by which it logocally groups

these units and makes sure that this dsk space management is made possible in an
easy and efficient manner.

Starting from the highest to the lowest granularity, the fllowing units of disk
spacs are present inTDDB:

1. Group Block: A group block is the most granulary unit of disk space in
TDDB. The Raw disk space obtained from the Disk is partitioned into many
Group Blocks.

11This means table-level locking.
12One that has currently locked the table.

Department of Computer Engineering, DJSCE 20

TDDB

2. Chunk Block:Each group block contains manyChunk Blocks. These chunk
blocks have a fixed size just like the group blocks they belongto. Each
chunk block has pages ofonlya specific type.

3. Disk Page:EachChunk Blockcontains manyDisk Pages. TheseDisk Pages
are of many types, a few of them being:

• Fixed-size Tuple Page:which holds each tuple’s fixed-size portion.

• Overflow Page:which holds overflow entries for many types of fields
in a table.

• Blank Page:which generally is used to storeCLOBentries.

5.1.8 Indexes

Indices are commonly used to enhance database performance.An index allows
the database server to find and retrieve specific rows much faster than it could do
without an index. However, indexes also add overhead to the database system as
a whole, so they should not be overused.

1. B-tree Index:
TDDB uses a B-tree structure to organize index information. A fully de-
veloped B-tree index is composed of the following three different types of
index pages or nodes:

• One root node. A root node contains node pointers to branch nodes.

• Two or more branch nodes. A branch node contains pointers to leaf
nodes or other branch nodes.

• Many leaf nodes. A leaf node contains index items and horizontal
pointers to other leaf nodes.

The fundamental unit of an index is the index item. An index item contains
a key value that represents the value of the indexed column for a particular
row. An index item also contains rowid information that the database server
uses to locate the row in a data page.

Nodes:A node is an index page that stores a group of index items.

How does TDDB create and fill a B-tree index?

Creation of Root and Leaf Nodes:When you create an index for an empty
table, the database server allocates a single index page. This page represents
the root node and remains empty until you insert data in the table.

Department of Computer Engineering, DJSCE 21

TDDB

At first, the root node functions in the same way as a leaf node.For each
row that you insert into the table, the database server creates and inserts an
index item in the root node.

When the root node becomes full of index items, the database server splits
the root node by performing the following steps:

• Creates two leaf nodes

• Moves approximately half of the root-node entries to each ofthe newly
created leaf nodes

• Puts pointers to leaf nodes in the root node

As you add new rows to a table, the database server adds index items to the
leaf nodes. When a leaf node fills, the database server creates a new leaf
node, moves part of the contents of the full index node to the new node, and
adds a node pointer to the new leaf node in the root node.

Eventually, as you add rows to the table, the database serverfills the root
node with node pointers to all the existing leaf nodes. When the database
server splits yet another leaf node, and the root node has no room for an
additional node pointer, the following process occurs.

The database server splits the root node and divides its contents among two
newly created branch nodes. As index items are added, more and more
leaf nodes are split, causing the database server to add morebranch nodes.
Eventually, the root node fills with pointers to these branchnodes. When
this situation occurs, the database server splits the root node again. The
database server then creates yet another branch level between the root node
and the lower branch level. This process results in a four-level tree, with
one root node, two branch levels, and one leaf level. The B-tree structure
can continue to grow in this way.

2. Hash Index:
Hash Indexes useHash tablesto implement indexes. A B-tree Index can
not be used for multi-attribute indexes, but is well suited for single-attribute
indexes. Hence, Hash Indexes are needed in such situations.Hash Indexes
can not be used is when relational operations other thanequality, such as
<, >,≤,≥ are to be used, because unlike B-trees, Hash Tables do not work
on comparison between key values, but work on the principle of equating
theHash Valueof the key with theHash Valueof other keys.

Department of Computer Engineering, DJSCE 22

TDDB

5.1.9 Join Processing

The efficient implementation of joins has been the goal of much work in database
systems, because joins are both extremely common but ratherdifficult to execute
efficiently. The difficulty results from the fact that joins are both commutative and
associative. In practice, this means that the user merely supplies the list of tables
to be joined and the join conditions to be used, and the database system has the
task of determining the most efficient way to perform the operation. Determining
how to execute a query containing joins is done by the query optimizer. It has two
basic freedoms:

1. join order: because joins are commutative, the order in which tables are
joined does not change the final result set of the query. However, join order
does have an enormous impact on the cost of the join operation, so choosing
the right join order is very important.

2. join method:given two tables and a join condition, there are multiple algo-
rithms to produce the result set of the join. Which algorithmis most efficient
depends on the sizes of the input tables, the number of rows from each table
that match the join condition, and the operations required by the rest of the
query.

Many join algorithms treat their input tables differently.The input tables are
referred to as the outer and inner tables, or left and right, respectively. In the case
of nested loops, for example, the entire inner table will be scanned for each row
of the outer table.

Join algorithms
There are four fundamental algorithms to perform a join operation.

1. Nested loops:

This is the simplest join algorithm. For each tuple in the outer join relation,
the entire inner join relation is scanned, and any tuples that match the join
condition are added to the result set. Naturally, this algorithm performs
poorly if either the inner or outer join relation is very large.

A refinement to this technique is called ”block nested loops”: for every
block in the outer relation, the entire inner relation is scanned. For each
match between the current inner tuple and one of the tuples inthe current
block of the outer relation, a tuple is added to the join result set. This variant
means that more computation is done for each tuple of the inner relation, but
far fewer scans of the inner relation are required.

Department of Computer Engineering, DJSCE 23

TDDB

2. Merge join:

If both join relations are sorted by the join attribute, the join can be per-
formed trivially:

• For each tuple in the outer relation,

– Consider the current ”group” of tuples from the inner relation; a
group consists of a set of contiguous tuples in the inner relation
with the same value in the join attribute.

– For each matching tuple in the current inner group, add a tuple to
the join result. Once the inner group has been exhausted, both the
inner and outer scans can be advanced to the next group.

This is one reason why many optimizers keep track of the sort order of
query nodes — if one or both input relations to a merge join is already
sorted on the join attribute, an additional sort is not required. Otherwise,
the DBMS will need to perform the sort, usually using an external sort to
avoid consuming too much memory.

3. Hash join:

Applying the Hash Join algorithm on a inner join of two relations proceeds
as follows: first prepare a hash table for the bigger relation, by applying a
hash function to the join attribute of each row, and then scanthe smaller
relation and find the relevant rows by looking on the hash table.

4. Semi join:

A semi join is an optimization technique for joins on distributed databases.
The join predicates are applied in multiple phases, starting with the earliest
possible. This can reduce the size of the intermediate results that must be
exchanged with remote nodes. Thus reducing inter node network traffic. It
can be improved with a Bloom-Filter (hashing).

5.1.10 Security Issues

Securityis a major concern in any non-trivial database management system, espe-
cially a distributed database management one such asTDDB, which relies heavily
on thenetworkfor transfer of data.

We have developed an access method which tries to reduce the risk of the se-
curity of the system being compromized, and confidential user data being leaked.

We have thought of a strategy which tries to minimize[not totally eliminate]
the influence of the man in the middle. We’ll describe it below. However, before

Department of Computer Engineering, DJSCE 24

TDDB

we delve into the details of that, let’s see why we consideredthe public/private
key solution not good enough.

1. Who would have the private key? If the server were to have it, then the
public key would have to be transferred to the client, which can be picked up
by the man in the middle[referred to asMIM in the rest of this document],
and then used to encrypt data. Ok, you say that the password would be
encrypted within the public-key encrypted message that theclient sends,
but then, theMIM an just pick up that request that the client sends to the
server, and keep firing it, and overloading the server[DOS attack].

2. The client can send the server encrypted information, buthow can the server
send the client encrypted information? Of course, it can not, because the
client has only a public key. So, you say make another set of keys of whih
the client has the private key, and the server has the public key. But then
again, theMIM can cause havoc by intercepting packets and sending them
for another query that the client fires. It[the client] will have no clue that
they are junk packets. Ok, this can be solved usingTIDswhich must match.
Meaning when the client sends a request, it also sends aTID, which the
server must send back to indicate it is a valid response. ThisTID could be
sent in an encrypted fashion. However, we are again stuck at the problem
of encrypting theTID!

3. PGPhas been cracked, and having a static hash key is always not advisable.
This leaves a lot of room open for hacks.

So, we have decided to go with the apporach described below. Table 1 contains
the list of symbols used.

P →The password of the user.

R →A string of random numbers.

Q →The user’s query string.

h(X)→Hash function applied on string X.

P+R→Concatenation of 2 strings P & R.

Table 1: Symbols used

1. The client tells the server that it wants to initiate a transaction.

Department of Computer Engineering, DJSCE 25

TDDB

2. The server sends sends the client a random string R. This issent unen-
crypted.

3. The client constructsh(P + R) with the P obtained from the user. Si-
multaneously, the server also computesh(P + R) from theP stored in it’s
database.

4. The client now gets the user’s query stringQ, and computesQ⊕h(P +R).
This is the string that is sent to the server.

5. The server XORs the received string withh(P +R), and gets back the actual
data that it is supposed to receive.

Thus, theMIM is rendered practically impotent! The problem can arise only
when the server generates R which has already been generatedbefore and the
same user is using it, and theMIM has logged the previousR, and has been able
to determineh(P +R) for thatP&R, and is quick to enough to retrieve it. A very
rare occurance if R is a pretty large number.

5.1.11 Multi-threaded Memory Allocator

TDDB is a multi-threaded application capable of running on an a multi-processor
machine, and taking advantage of features like:

• Multiple Threads of exection

• Multiple Processors

It uses these features to produce the results to user queriesmore efficiently13.

Theory of Design of the Allocator
This implementation involves maintaining 2 free lists for each thread, for

each bin-size. One of the lists would be the allocation list,and the other would
be the deallocation list. Whenever objects are to be allocated, they are given
off from the allocation list, and whenever, they are freed, they are put into the
free/deallocation-list. This is a truly multi-threaded data structure, which is not
quite scalable, but multiple data structures of the same kind make it linearly scal-
able over a large domain. This means that while neither the allocation/deallocation
lists interferes with each other, also no locking is required. This scheme also si-
multaneously solves the problem of locality, producer-consumer model programs,
and false sharing to a large extent. There is also a global heap for each bin-size,

13By efficiently, here we mean faster, or in a lesser amount of time.

Department of Computer Engineering, DJSCE 26

TDDB

which is maintained as a linked list of super-blocks, which may not necessarily
be from the same physical/virtual page, but are of size 1 or 2 pages, that is the
total memory of the links in a logical super-block is 4K or 8K,depending on your
choice! One thing to be noted here is that the blocks in the allocate-list may not
necessarily be a multiple of the page size in the system. The reason for this will
become clear shortly. Now, follows a description of the algorithm for the alloca-
tion of memory from the above-mentioned allocator.

Algorithms for the Allocate and Deallocate functions:

• Allocate(Size) Begin

1. Search the allocate linked list for a free block of size Size. This op-
eration just involves checking the correct bin for the existence of a
non-zero link in the bin’s linked list.

2. If such an entry exists, then we just return it to the user. Otherwise, we
ask the deallocate-free list to give us some memory, which isat least 1
block in size, so that the current request can be satisfied.

3. The deallocate-free list will first lock itself, and then query itself to
check if it contains at least 1 entry. If so, it will make the Size of
the deallocate-list 0, unlock itself, and will return that entry to the
requester, or else it will unlock itself and query the globalheap for an
entry that is 1 or 2 Pages in size.

4. The global pool in turn will first lock itself, and query itself to check if
it contains a valid super-block, which is nothing but a logical page or
2-logical pages. If they exist, they are removed from the free-list, the
global heap is unlocked, and the super-block is given to the requester.
If not, then the global-heap is unlocked, and a page or a couple of
pages are allocated from the page memory allocator, the headers are
written, and is returned.

End.

• Deallocate(Pointer) Begin

1. Lock the correct deallocate-list, add the entry Pointer to the deallocate-
list, and increment the Size of the deallocate-list by 1. If the size of the
deallocate-list is equal to a page, or 2-pages, whatever seems conve-
nient, return it to the global-pool, and set the Size of the deallocate-list
to 0. The global pool treats the memory list as a super-block,and adds
it to the list of its super blocks. Finally, we unlock the deallocate-list.

Department of Computer Engineering, DJSCE 27

TDDB

End.

The addition of a logical page to the global-pool is made possible by first
locking it, and then adding the logical page to the front of the super-block free-
list. Finally, the global-pool is unlocked.

Thus, it can be seen that there is not strict need of locking atevery stage of the
allocator. Atomic operations can be implemented using the facilities provided by
the underlying Operating System.

5.1.12 SQL processing Engine

The SQL processing Engine is the main interface of the TDDB Engine with the
SQL Parser. The SQL Parser will parse SQL syntax, and create ahelper object
for each type of SQL statement, which will be handled appropriately by the SQL
processing Engine. The SQL processing Engine currently handles the following
SQL statements:

• CREATE TABLE

• CREATE DATABASE

• DROP TABLE

• DROP DATABASE

• SELECT

• INSERT

• UPDATE

• DELETE

• BEGIN WORK/TRANSACTION

• END WORK/TRANSACTION

• LOCK TABLE(S)

• UNLOCK TABLE(S)

• SET ISOLATION LEVEL

• COMMIT

• ROLLBACK

Department of Computer Engineering, DJSCE 28

TDDB

Figure 4: The Data Flow Diagram showing how a Query is processed

5.2 Data Flow Diagram

Figure 4 shows the Data Flow Diagram for how a Query is processed byTDDB.
The following steps occur in processing of a Query:

1. Step - 1:The user fires a Query, and it is checked for syntactic correctness at
the client side itself. Syntactic correctness includes things like omission of
theFROM Clause, or omission of what toSELECTin aSELECTstatement.
These errors are independent of the schema of the table, or database, and can
be detected at the client side itself. This saves some amountof network data
transfers, and reduces the load on the network, and also generally speeds up
Query processing.

2. Step - 2:The Query is sent to theSQL Parser, and is checked for other errors
which depend on the schema of the table and database, such as entering a
field name in aSELECTstatement while a field with such a name does not
exist in that table, etc. . . . If theSQL Parserdetects that there is an error, it
notifies the sender about such an occurance.

3. Step - 3:TheMaster Nodegeneratessub-queriesfor each of theData Stor-
age Nodesconnected to it, and sends thesesub-queriesto each of these
Data Storage Nodes. Here, many optimizations are possible based on the

Department of Computer Engineering, DJSCE 29

TDDB

type of fragmentation or replication involved. TheMaster Nodemaintains
meta data about all the tables it manages. Hence, it it able toperform such
optimizations.

4. Step - 4:A process similar toSteps 1 & 2is performed here, except that this
is at theMaster & Storage Nodeinterface. Here too, theSQLgenerated is
processed by theSQL Parser, and aQuery Evaluation Planis generated for
processing this query.

5. Setp - 5:TheResult Set(s)are sent back to theMasterafter being generated
by theData Storage Nodes. Theunionof these constitutes the final result
in most cases. However, many a time, anORDER BY or GROUP BYclause
in the original query needs to be processed at theMaster, and hence, these
tuples are further processed here.

6. Step - 6:The final result set is sent to the client by theMaster. This step
marks the end of the Query Processing cycle inTDDB.

Department of Computer Engineering, DJSCE 30

TDDB

6 Implementation

6.1 Schedule

6.1.1 Timeline Chart

Figure 5: Time Chart: Week 1-10

Department of Computer Engineering, DJSCE 31

TDDB

Figure 6: Time Chart: Week 11-20

Figure 7: Time Chart: Week 21-30

Department of Computer Engineering, DJSCE 32

TDDB

6.2 Project Resources

6.2.1 Hardware

The hardware required for the project is:

• x86-64 architecture machine.

• Borad-band internet.

• Dual processor machine for testing concurrently executingcode.

• Sufficient RAM [8GB] for executing largeJoins, andSortson large tables.

6.2.2 Software

• GNU/Linux : Operating System

We decided to go in for UNIX-like system to develop our project. UNIX
is a very old, but highly effective, stable, and reliable, asproven by various
systems around the world over the years. In fact, most, if notall, of the
major databases you would trust your life with14, run on various Unices15.

The GNU/Linux operating system is a very high-quality implementation of
the UNIX standard. Moreover, it’s free for use by developers(and busi-
nesses that have good in-house technical support). We stillhaven’t decided
which distribution of Linux shall be our development platform, but we shall
spare no efforts to ensure that the system works on all major Linux distri-
butions out there.

The ones in reckoning for our attention are :

– Fedora Core

– Novell Suse Linux

– Mandriva

– Debian GNU/Linux

– Gentoo

For now, we are continuing our development efforts on Red Hat- 9.

14Hospitals, banks, airports . . .
15Plural of Unix.

Department of Computer Engineering, DJSCE 33

TDDB

• g++ : A Standards compliant C++ Compiler

A Standard compliant C++ compiler is required to compile thesource code
of the project. This compiler should support the full C++ standard, and also
allow machine specific inline assembly and C code. Being an optimizing
compiler, is an added advantage.

• emacs : A text-editor

A syntax recognizing text-editor such as emacs which has in-biuld support
for languages such as:

– C

– C++

– Assembly

– Latex

Is useful, because it eliminates many of the syntax errors while writing the
code.

• valgrind : a memory error detector for x86-linux

One of the most common and worst errors while programming in languages
which allow you to deal with pointers are:

– Memory leaks and

– Memory Access Violations.

Valgrind is a memory leak detection tool, which does just that. It is a freely
available tool licensed under the GNU/GLP. However, it works only on x86-
linux.

• scons : a software construction tool

sconsis a tool which allows you to create builds for large projectsin a very
short amoyunt of time. It allows you to handle complexity in avery simple
and elegant manner.Sconsis a tool which provides functionality similar to
the GNU build tools such as:

– Autoconf

– Automake

– make

Department of Computer Engineering, DJSCE 34

TDDB

Sconsis written isPython, and allows you to writePythoncode in the build
script.

• LATEX: structured text formatting and type-setting tool

LATEX is a tool which allows you to create professional looking documents
in a jiffy. In fact this document has also been written usingLATEX.

• doxygen : Documentation system for C/C++, etc. . .

Doxygen is a documentation system for C++, C, Java, Objective-C, Python,
IDL (Corba and Microsoft flavors) and to some extent PHP, C#, and D.

It can generate an on-line documentation browser (in HTML) and/or an
off-line reference manual (in LATEX) from a set of documented source files.
There is also support for generating output in RTF (MS-Word), PostScript,
hyperlinked PDF, compressed HTML, and Unix man pages. The documen-
tation is extracted directly from the sources, which makes it much easier to
keep the documentation consistent with the source code.

• Flex : A lexical analyser

flex is a tool for generating scanners: programs which recognise lexical
patterns in text. flex reads the given input files, or its standard input if
no file names are given, for a description of a scanner to generate. The
description is in the form of pairs of regular expressions and C code, called
rules. flex generates as output a C source file, ‘lex.yy.c’, which defines a
routine ‘yylex()’. This file is compiled and linked with the ‘-lfl’ library to
produce an executable. When the executable is run, it analyses its input for
occurrences of the regular expressions. Whenever it finds one, it executes
the corresponding C code.

flex can be used to generate a C++ scanner class, using the ‘-+’option,
(or, equivalently, ‘%option c++’), which is automaticallyspecified if the
name of the flex executable ends in a ‘+’, such as flex++. When using this
option, flex defaults to generating the scanner to the file ‘lex.yy.cc’ instead
of ‘lex.yy.c’. The generated scanner includes the header file ‘FlexLexer.h’,
which defines the interface to two C++ classes.

• Bison : A parser generator

Choosing the tools for creating an interpreter was not simple. Lex and yacc
are the traditional tools in the Unix environment, however,they are pri-
marily ‘C’ language tools, and would not blend very well intothe object-
oriented nature of development that we intended to pursue. The other choices
that we had were:

Department of Computer Engineering, DJSCE 35

TDDB

– Lemon

– ANTLR

– BisonCPP

• Lemon

Lemon itself has been used in SQLite, an embedded database engine. The
lemon parser too is C based, but it is functionally differentfrom the Yacc
parser. For one, in most conventional parsers, it is the parser that calls the
lexer for tokens. However, in lemon, it is the lexer that calls the parser.
Also, the parser generated by lemon is thread-safe, i.e. it can be simply
plugged into a multithreaded program without any problems.However, the
grammar specification for a lemon differs from that of yacc.

• ANTLR

ANTLR parser is a Java-based parser generator. Due to the lack of Java de-
velopment tools on the Unix platform, this aspect weighed heavily against
ANTLR. However, it is a parser with an n-level look-ahead16. We under-
stand this to be an advantage, but our knowledge of compilersis presently
too limited to judge whether this makes it a better choice.

• BisonCPP

BisonCPP is a port of the bison17 parser generator to C++. This seems to
be the only possible advantage of BisonCPP. Unless we have very serious
issues with Yacc, there seems to be no compelling reason to use it.

• Our choice

We decided to go ahead with a flex + bison combination, which are the GNU
versions of lex and yacc respectively. The decision factorsthat weighed in
favourably in favour of these were:

– Easy availability on modern distributions of GNU/Linux.

– Plethora of documentation on line.

– Well-tested, and have been stable for years.

– Other successful databases like PostgreSQL and MySQL use the same
tools.

16The number of tokens the parser reads without pushing them onto the stack
17GNU version of Yacc

Department of Computer Engineering, DJSCE 36

TDDB

– Success in making the parser generated by these tools thread-safe18.

• CVS - Concurrent Versions System

CVS is a version control system, an important component of Source Config-
uration Management (SCM). Using it, you can record the history of sources
files, and documents. It fills a similar role to the free software RCS, PRCS,
and Aegis packages.

CVS is a production quality system in wide use around the world, including
many free software projects.

While CVS stores individual file history in the same format asRCS, it offers
the following significant advantages over RCS:

– It can run scripts which you can supply to log CVS operations or en-
force site-specific polices.

– Client/server CVS enables developers scattered by geography or slow
modems to function as a single team. The version history is stored on
a single central server and the client machines have a copy ofall the
files that the developers are working on. Therefore, the network be-
tween the client and the server must be up to perform CVS operations
(such as checkins or updates) but need not be up to edit or manipu-
late the current versions of the files. Clients can perform all the same
operations which are available locally.

– In cases where several developers or teams want to each maintain their
own version of the files, because of geography and/or policy,CVS’s
vendor branches can import a version from another team (evenif they
don’t use CVS), and then CVS can merge the changes from the vendor
branch with the latest files if that is what is desired.

– Unreserved checkouts, allowing more than one developer to work on
the same files at the same time.

– CVS provides a flexible modules database that provides a symbolic
mapping of names to components of a larger software distribution. It
applies names to collections of directories and files. A single com-
mand can manipulate the entire collection.

– CVS servers run on most unix variants, and clients for Windows NT/95,
OS/2 and VMS are also available. CVS will also operate in whatis
sometimes called server mode against local repositories onWindows
95/NT.

18This property was very much desired, both by us and the project in-charge. Details on how

this was achieved will follow later.

Department of Computer Engineering, DJSCE 37

TDDB

6.2.3 Special Resources

The operating enviroment for both the Design & Build and the Execution phase is
A GNU/Linux based enviroment running on x86 or x86-64 systems.

7 Testing

7.1 Test Plan

We indend using a variety of test methods for making sure thatthe correcness of
the final product is not compromized in any way, and at the sametime making
sure that the efficiency is maintained at a decent enough and workable level. The
various testing methods we indend using are listed below, with a broef description
of each one followed by how we will be using it specifically in this project.

• White Box Testing:

Also called as glass-box testing, is a design method that uses the control
strusture of the procedural design to derive test cases. Using white box
testing methods, there are test cases that

1. All independent paths within a module have been exercisedat least
once.

2. All logical decisions are exercised on their true and false sides.

3. All loops are executed at their boundaries and within their operational
bounds.

4. Internal data structures are exercised to ensure their validity.

• Basis Path Testing:

Basis path testing is one such white box testing which involves the following
parts

1. Flow graph- Flow graph depicts logical control flow using the graph
notations. In a flow graph each node represents one or more procedu-
ral statements. The arrows on the flow graph, called edges or links,
represents flow of control and are anologous to flowchart arrows.

2. Cyclomatic Complexity- Cyclomatic complexity is a software metric
that provides a quantative measures of the logical complexity of a pro-
gram. The value computed here defines the number of independent

Department of Computer Engineering, DJSCE 38

TDDB

paths in the basis set. It provides with an upper bound for thenumber
of tests that must be conducted to ensure that all statementshave been
executed atleast once.

3. Deriving Test Cases- Following steps are applied to derive the basis
set.

(a) Using the design or code as a foundation, draw a corresponding
flow graph.

(b) Determine cyclomatic complexity of resultant flow grpah.

(c) Determine a basis set of linearly independent paths.

(d) Prepare test cases that will force execution of each pathin the
basis set.

4. Graph Matrices- A graph matrix is a software tool that assists in basis
path testing. A grpah matrix is a square matrix whose size is equal to
the number if nodes on the flow graph. Graph matrix can become a
powerful tool for evaluating program control structure during testing.

Speaking in terms of a software engineer, white box testing is a good way
to detect the software defects. But since the shortage of time faced as a
student, we have not used white box testing for testing TDDB.

• Black Box Testing:

Black-box testing, also called behavioural testing, focuses on the functional
requirements of the software developed. Black-box testingenables to de-
rive sets of input conditions that will fully exercise all functional require-
ments for a program. Black-box testing ia not a alternative to white-box
techniques. Rather a complementary approach that is likelyto uncover a
different class of errors than white-box methods.

Black-box testing attempts to find errors in the following categories:

1. incorrect or missing functions,

2. interface errors,

3. errors in data structures or external data base access,

4. behavior or performance errors, and

5. initialization and termination errors.

Black-box testing ia applied during later stages of testing. Different steps in
back-box testing are :

Department of Computer Engineering, DJSCE 39

TDDB

1. Graph-Based Testing Methods:

Testing here is to understand and test the objects and relationship that
connect these objects. Software testing begins with creation of a graph
of important objects and their relationship and devising a series of tests
that will cover the graph so that object and relationship is exercised and
errors are uncovered.

2. Equivalence Partitioning:

Equivalence Partitioning is a Black-box testing method that divides
the input domain of a program into classes of data from which test
can be derived. Equivalence partitioning strives to define atest case
that uncovers classes of errors, thereby reducing the totalnumber of
test cases that must be developed. Test cases design for equivalence
partitioning is based on an evaluation of equivalence classes for an
input condition.

3. Boundary Value Analysis:

The reason behind Boundary Value Analysis to be a popular testing
technique is that a greater number if error tend to occur at the bound-
aries of the input domain rather than the center. Boundary Value Anal-
ysis leads to a selection of test cases that exercise bounding values

4. Comparison Testing:

When redundant software is developed, seperate software engineering
teams develop independent versions of an application usingthe same
specification. Each version can be tested with the same test data to
ensure that all provide identical output. All versions are executed in
parallel with real-time comparision of results to ensure consistency.
These independent versions form the basis ol a black-box testing tech-
nique called comparison testing or back-to-back testing.

5. Orthogonal Array Testing:

Orthogonal array testing can be applied to problems in whichthe in-
put domain is relatively small but too large to accommodate exhaustive
testing. The orthogonal array testing method is particularly useful in
finding errors associated with region faults - an error category associ-
ated with faulty logic within a software component.

• Unit Testing:

Unit testing focuses verification effort on the smallest unit of software de-
sign, the software component or module. Using the component-level design
description as a guide, important control paths are tested to uncover errors

Department of Computer Engineering, DJSCE 40

TDDB

within the boundary of the module. The relative complexity of tests and
uncovered errors is limited by the constrained scope established for unit
testing. The unit test is white-box oriented, and the step can be conducted
in parallel for multiple components.

The module interface is tested to ensure that information properly flows into
and out of the program unit under test. The local data structure is examined
to ensure that data stored temporarily maintains its integrity duringall steps
in an algorithm‘s execution. Boundary conditons are testedto ensure that
module operates properly at boundary established to limit or restrict pro-
cessing. All independent paths through the control structure are exercised
to ensure that all statements in a module have been executed at least once.
Finally, all error handling paths are tested.

Among the more common errors in computation are

1. misunderstood or incorrect arithmetic precedence,

2. mixed mode operations,

3. incorrect initialization,

4. precision inaccuracy,

5. incorrect representation of an expression

Test cases should uncover errors such as

1. comparision of different data types,

2. incorrect locigal operators or precedence,

3. expectation of equality when precision error makes equality unlikely,

4. incorrect comparision of variables,

5. improper or nonexistent loop termination,

6. failure to exit when divergent iteration is encountered,and

7. improperly modified loop variables

Among the potential errors that should be tested when error handling is
evaluated are

1. Error description is unintelligible.

2. Error noted does not correspod to error encountered.

3. Error condition causes system intervention prior to error handling.

Department of Computer Engineering, DJSCE 41

TDDB

4. Exception condition processing is incorrect.

5. Error description does not provide enough information toassist in the
location of the cause of the error.

Unit testing is normally considered as an adjunct to the coding step. After
source level code has ben developed, reviewed, and verified for correspon-
dence to component level design, unit test cases that are likely to uncover
errors in each of the categories. Each test case should be coupled with a set
of expected results

A driver or a stub software has to be developed for each unit test. in most
applications a driver is nothing more than a ”main program” that accepts
data, passes such data to the component and prints relevant results. Stubs
serve to replace modules that subordinate to the component to be tested.
Drivers and stubs represents overhead. That is, both are software that must
be written but that is not deliveres with the final software product. If drivers
and stubs are kept simple, actual overhead is relatively low.

• Integration Testing:

After each unit is tested individually, we move to integration testing. Even
after every unit is tested, they are combined stepwise n checked for errors.
This is known as integration testing. There are many errors that come up
when the units are interfaced together. This errors are hardly known when
each unit is tested. The errors may be realted to the data, between the mod-
ules, and even the desired output may not be produced.

Integration testing is a systematic technique for constructing the program
structure while at the same time conducting tests to uncovererrors associ-
ated with interfacing. The objective is to take unit tested components and
built a program strucutre that is required as per the design.

There is often a tendency to attempt nonincremental integration, that is to
construct the program using a ”big bang” approach. All components are
combined and the entire program is tested as a whole. This always results
in set of errors. Correction of errors is very difficult. Oncethe errors are
corrected new ones appear. This takes a lot of time for the program to be
error free.

To avoid the problems faced in the big bang approach, incremental integra-
tion is used. The program is constructed and tested in small increments,
where errors can be isolated and corrected, interfaces are likely to be tested
completely.

Following are different integration stratergies

Department of Computer Engineering, DJSCE 42

TDDB

– Top-down Integration:

Modules are integrated by moving downward through the control hier-
archy, beginning with the main control module, main program. Mod-
ules subordinate to the main control module are incorporated into the
structure in either a depth-first or breadth-first manner.

Depth-first integration would integrate all components on amajor con-
trol path of the structure. Selection of a major path is somewhat arbi-
trary and depends on application-specific characteristics. Breadth-first
integration incorporates all components directly subordinate at each
level, moving across the structure horizontally.

The integration process is performed in a series of five steps

1. The main control module is used as a test driver and stubs are
substituted for all components directly subordinate for all compo-
nents directly subordinate to the main control module.

2. Depending on the integration approach selected subordinate stubs
are replaced one ata atime with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with
the real components.

5. Regression testing may be conducted to ensure that new errors
have not been introduced. The process continues from step 2 until
the entire program structure is built.

Top-down stratergy sounds relatively uncomplicated, but in practice,
logistical problems can arise. The tester is left with threechoices :

1. delay many tests until stubs are replaced with actual modules,

2. develop stubs that perform limited functions that stimulate the ac-
tual module, or

3. integrate the software from the bottom of the hierarchy upwards

The first approach causes us to loose some control over correspon-
dence between specific tests and incorporates of specific modules. The
second approach is workable but not feasible as it leads to significant
overhead. The third approach, called as bottom-up testing is discussed
as next stratergy.

– Bottom-up Integration:

Bottom-up integration testing, as it name implies, begins construction
and testing with atomic modules(components at the lowest level in
the program structure). Because components are integratedfrom the

Department of Computer Engineering, DJSCE 43

TDDB

bottom up, processing required for components subordinateto a given
level is always available and the need for stubs is eliminated.

A bottom-up integration strategy may be implemented with the fol-
lowing steps:

1. Low-level components are combined into clusters that perfiorm a
specific software subfunction.

2. A driver (a control program for testing) is written to coordinate
test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upwards
in the program structure.

As integration moves upward, the need for seperate test drivers lessens.
In fact, if the top two levels of program structure are integrated top
down, the number of drivers can be reduced substantially andintegra-
tion of clusters is greatly simplified.

• Regression Testing:

Each time a new module is added as a part of integration testing, the soft-
ware changes. These changes are reflected by changes such that new data
flow paths are established, new I/O may occur, and new controllogic is in-
voked. These changes may cause problems with functions thatpreviously
worked flawlessly. In the context of an integration test startergy, regression
testing is the re-execution of some subset of tests.

Successful tests result in the discovery of errors, and errors are corrected.
Whenever software is corrected, some aspect of software configuration is
changed . Regression testing is the activity that helps to ensure that changes
do not introduce unintended behavior or additional errors.Regression test-
ing may be conducted manually, by re-executing a subset of all test cases or
using automated capture/playback tools.

The regression test suite contains three different classesof test cases:

1. A representative sample of tests that will exercise all software func-
tions.

2. Additional tests that focus on software functions that are likely to be
affected by the change.

3. Test that focus on the software components that have been changed.

Department of Computer Engineering, DJSCE 44

TDDB

As integration testing proceeds, the number of regression tests can grow
quite large. It is impractical and inefficient to re-executeevery test for every
program function once a change has occured

• System Testing:

Software is incorporated with other system elements, and a series of system
integration and validation tests are conducted. Such testsrelated of exe-
cution of the software with respect to the system it is being executed are
known as system testing.

The potential problems faced are :

1. design error handling paths thata test all information coming from
other elements of the system,

2. conduct a series of tests that stimulate bad data or other potential errors
at the software interface,

3. record the results of tests to use as evidence if finger-pointing does
occur, and

4. participate in planning and design of system tests to ensure that soft-
ware is adequately tested.

System testing is actually a series of different tests whoseprimary purpose
is to fully exercise the computer-based system. Although each test has a dif-
ferent purpose, all work to verify that system elements havebeen properly
integrated and perform allocated functions.

Following we will discuss the types of system tests that are worthwhile for
software based systems.

– Recovery Testing:

Many computer based system must recover from faults and resume
processing within a prescribed time. A system must be fault tolerant,
that is, processing faults must not cause overall system function to
cease. In other cases, a system failure must not be correctedwithin a
specified period of time or severe economic damage will occur.
Recovery testing is a system test that forces software to fail in a vari-
ety of ways and verifies that recovery is properly performed.Recovery
can be automatic, by the system itself or by human intervention. If re-
covery is automatic, the system, reinitialization, checkpointing mech-
anisms, data recovery and restart are evaluated for correctness. If it re-
quires human intervention, MTTR is evaluated to determine whether
it is within acceptable limits.

Department of Computer Engineering, DJSCE 45

TDDB

– Security Testing:

Security testing attempts to verify that protection mechanisms built
into system will, in fact, protect it from improper penetration. The sys-
tem‘s security must,of course be tested for invulnerability from frontal
attack but must also be tested for invulnerability from flankor rear at-
tack.

During security testing, the tester plays the role of the individual who
desire to penetrate the system. The tester may attempt to acquire pass-
words through external clerical means; may attack the system with
custom software designed to breakdown any defenses that have been
constructed; may overwhelm the system, thereby denying services to
others; may purposely cause system errors, hoping to penetrate during
recovery; may browse through insecure data, hoping to find the key to
system entry.

Given enough time and resources, good security testing willultimately
penetrate a system. The role of the system designer is to makepene-
tration cost more than the value of information that will be obtained.

– Stress Testing:

Stress testing executes a system in a manner that demands resources
in abnormal quantity, frequency, or volume. For example,

1. Special tests may be designed that generate ten interrupts per sec-
ond, when one or two is the average rate.

2. Input data rates may be increased by an order of magnitude to
determane how input functions will respond.

3. Test cases thet require maximum memory or other resourcesare
executed.

4. Test cases that may cause thrashing in a virtual operatingsystem
are designed.

5. Test cases that may cause excessive hunting for disk-resident data
are created. Essentially, the tester attempts to break the program.

A variation of stress testing is a technique called sensitivity testing. In
some situation, a very small range of data contained within the bounds
of valid data for a program may cause extreme and even erroenous
processing or profound performance degradation. Sensitivity testing
attempts to uncover data combinations within valid input classes that
may cause instability or improper processing.

– Performance Testing:

Department of Computer Engineering, DJSCE 46

TDDB

For real-time and embedded systems, software that providesrequired
function but does not conform to performance requirements is unnac-
ceptable. Performance testing is designed to test the run-time perfor-
mance of software within the context of an integrated system. Per-
formance testing occurs throughout all steps in testing process. Even
at the unit level, the performance of an individual module may be as-
sessed. However, it is not until all system elements are fully integrated
that the true performance of a system can be ascertained.

Performance tests are often coupled with stress testing andusually
require both hardware and software instrumentation. That is, it is often
necessary to measure reource utilization in an exacting fashion. By
instrumenting a system, the tester can uncover situations that lead to
degradation and possible system failure.

7.2 Test Cases & Methods Used

We have used a judicious use of the testing techniques described above for testing
the working correctness & efficiency aspects of TDDB.

Black Box Testing & Unit Testingwere used to test each of the individual
components which can operate in isolation. These include:

• Lock Manager

• Buffer Cache

• File Interface

• Bitmap Lock

• Dirty Map

• Table Lock

• MT-Allocator

• MD5 Encryption

• External Parallel Merge Sort

• Threading Interface

• Socket Interface

• Primitive Data Types

Department of Computer Engineering, DJSCE 47

TDDB

• Disk Debugger

For the other modules which depended on the other modules to be working,
we usedIntegration Testingwhere by we had assemble the whole system, and
then begin testing, because of coupling between the individual modules. These
include:

• SQL Parser

• Console Client

• Server

• SQL Execution Engine

Regression Testinghelped us discover bugs which were introduced into the
code tree because of the addition of a new feature, or becauseof some other bug-
fix.

8 Maintenance

8.1 Installation

This is how you can install & run TDDB for the first time.
TDDB is broken up into a Server & a Client application. The following steps

need to be carried out in order to compile & run TDDB:

1. Compile TDDB: Run ’scons opt=1 release=1’ from within thetddb/ direc-
tory.

2. Set up the initial DB file. This must be at least 256MB in size. This can be
done using ’dd’ as such:
’dd if=/dev/zero of=dbstub.dat bs=1048576 count=400’
This will create a DB file of size 400MB. You can also use any RAWdisk
space or partition for the DB file.

3. Format the DB file for initial use:
’./src/client/server –db-file-name=dbstub.dat –create-db’
Will format the file for subsequent use.

Department of Computer Engineering, DJSCE 48

TDDB

4. Start the TDDB server:
’./src/client/server –db-file-name=dbstub.dat’
This will start the TDDB server, and will bring you to the ADMIN prompt
where you can type ’help’ to get the list of commands supported.

5. Help on the server can be obtained using:
’./src/client/server –help’

6. Start the console based client:
’./src/client/consoleclient’
As usual add a ’–help’ for help on the console client.

7. Congratulations! If you got to this point, and the consoleclient connected
to the TDDB server, then you can start executing SQL queries.

9 Conclusion & Future Scope

This project has been a great learning experience for us, andwe have gotten to
know many practical design & implementation level aspects of real systems. The
experience co-corination & working in groups with people located at geographi-
cally distant locations has been something new, exciting & enjoyable for us. Need-
less to say, we have learnt alot from it.

As far as the future scope of this project, there is lots that can be done. There
are many features & optimizations that can be implemented. To mention some:

• Nested Query Support

• Support for non-field projections

• Support forAggregatefunction in SQL

• Support for Indexes

• Query Optimization

• Support for Query Time-Out

• Process management administrative functions

• Process priority admistration

• Support for Users

• Security features such as database/table access rights on aper user basis.

Department of Computer Engineering, DJSCE 49

TDDB

As with any project, there are some limitations thatTDDBhas. Here are some
major ones:

• The INTEGER/INT data type doesn’t support negative numbers. Yes, only
non-negative numbers can be used. Furthermore, decrementing an INT be-
yond 0 results in the INT getting the value NULL.

• You can view the list of tables, and the commands used to create them by se-
lecting from the table ’global.tabtab’ as: ’SELECT * FROM global.tabtab;’.
This command is treated as a DDL statement for compatibilityreasons.

• DDL Commands are also Transaction oriented!! Suppose you CREATE or
DROP a Table by mistake, you can revert your action by doing a ROLL-
BACK. However, if you want to make the changes permanant, useCOM-
MIT.

• You can’t Mix DML & DDL commands in a single Transaction. Suppose
you CREATE a table, you need to COMMIT or ROLLBACK before you
issue a DML Command. You may however, issue another DDL Command
in the same Transaction such as creating or dropping anothertable. Don’t
try to CREATE & DROP the same table in the same Transaction though.

• Maximum Row Size = 8100 Bytes. That is the Sum of all data typesin the
Row should be not greater than 8100 Bytes. The sizes of the various data
types for this calculation are mentioned in Table 2 below:

Data Type Size In Bytes

INTEGER 8

CHAR(N) N + 4

VARCHAR(N) 32

CLOB 16

Table 2: Various data types and their sizes on disk

• There is currently no support for indices, and so each query processed needs
to do a full table scan. Even JOINs are performed using thenested loop join
algorithm. We are working on getting more efficient JOIN algorithms which
don’t need Indices or create the indices dynamically in place, so that JOIN
processing can be made faster.

• There is currently no support for nested queries.

Department of Computer Engineering, DJSCE 50

TDDB

• The type checking of the parser is quite weak. That needs to befixed. For
example, certain type conversions are performed silently by the engine with-
out the user ever being notified about them. If the user passesa string in case
of an integer, then the string is parsed as an int, and the firstfew digit charac-
ters(if any) are parsed as the integer. For the reverse case,the integer parsed
as the string is entered as a string with the representation of the integer.

Department of Computer Engineering, DJSCE 51

TDDB

List of Figures

1 Relationship between the Master & the Data Storage Nodes 7
2 Relationship between a single TDDB Master & Clients8
3 Relationship between multiple TDDB Masters & Clients 10
4 The Data Flow Diagram showing how a Query is processed 29
5 Time Chart: Week 1-10 . 31
6 Time Chart: Week 11-20 . 32
7 Time Chart: Week 21-30 . 32

List of Tables

1 Symbols used . 25
2 Various data types and their sizes on disk 50

Department of Computer Engineering, DJSCE 52

TDDB

References

[PatXX] Some Considerations of Locking to Prevent Phantoms, Patrick O’Neil,
Alan Fekete, Elizabeth O’Neil1, and Dimitrios Liarokapis

[Tob94] The Design and Performance Evaluation of a Lock Manager for a
memory-Resident Database System, Tobin. J. Lehman, Vibby Gotte-
mukkala, January 14, 1994

[Don81] A History and Evaluation of System R, Donald D. Chamberlin, Thomas
G. Price, Morton M. Astrahan, Franco Putzolu, Michael W. Blasgen, Patri-
cia Griffiths Selinger, James N. Gray, Mario Schkolnick, W. Frank King,
Donald R. Slutz, Bruce G. Lindsay, Irving L. Traiger, Raymond Lorie,
Bradford W. Wade, James W. Mehl, Robert A. Yost, October 1981

[Sto80] Retrospection on a Database System, Michael Stonebraker, June 1980

[Tan87] Non-Stop SQL, A Distributed High-performance, High-availbility Im-
plementation of SQL, Tandem Database Group, April 1987

[And84] Robustness to crash in a Distributed Database: A NonShared-Memory
Multi-Processor Approach, Andrea Borr, Tandem Database group, Septem-
ber 1984

[Avi96] Strategic Directions in Database Systems–Breaking Out of the Box, Avi
Silberschatz, Stan Zdonil et al., December 1996

[Avi95] Database Research: Achievements and Opportunities Into the 21st Cen-
tury, Avi Silberschatz, Michael Stonebraker, Jeff Ullman,editors, May
1995

[Sto91] The Postgres Next-Generation Database ManagementSystem, Michael
Stonebraker, Greg Kemnitz, October 1991

[Dav92] Parallel Database Systems: The Future of High Performance Database
Processing, David J. DeWitt, Jim Gray, January 1992

[Hon85] An Evaluation of Buffer Management Strategies for Relational Database
Systems, Hong-Tai Chou, David J. Dewitt

[Sto87] The Design of the Postgres Storage System, Michael Stonebraker

[Jim96] The Dangers of Replication and a Solution, Jim Gray,Pat Helland,
Patrick O’Neil, Dennis Shasha

Department of Computer Engineering, DJSCE 53

TDDB

[DimXX] On Serializability of Multidatabase TransactionsThrough Forced Lo-
cal Conflicts, Dimitrios Georgakopoulos and Marek Rusinkiewicz, Amit
Sheth

[Knu98] Donald Knuth, The Art of Computer Programming Volume-3,2nd Edi-
tion, Pearson Education, 2004

[Hec04] Hector Garcia-Molina, Jeffrey D. Ullman, JenniferWidom, Database
Systems: The Complete Book,1st Edition, Pearson Education, 2004

[Ram04] Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Sys-
tems,4th Edition, Pearson Education, 2004

[Sil02] Silberschatz, Korth, Sudarshan, Database System Concepts,4th Edition,
Mc Graw Hill, 2002

Department of Computer Engineering, DJSCE 54

